PELLETED SEED PRIMER

What Is It?     Pelleted seeds are enclosed in a layer of fine clay to protect them from insects and birds.  Beneficial micro-organisms, fertilizer, and seed protectants can also be included in the clay pellet as needed.  Pelleted seeds are ideal for no-till agriculture where crops are broadcast seeded into standing vegetation.  Pelleted seeds are also easier to drill or sow by hand because each pellet is large enough to space accurately.

How To Do It:     Use 1 part seeds + 7 parts finely powdered clay = 8 total parts by volume.  (12.5% seeds + 87.5% powdered clay = 100% by volume).  Any kind of sticky clay will work or use dry, powdered clay purchased in 50-pound bags from a pottery supplier.

If preparing clay from scratch, remove and save topsoil then dig clay from subsoil layers.  Wash or sift clay through window screening to remove impurities.  Dry clay then grind before use.  Ideal pelleting clay should be pure and dust-like, similar to wheat flour.

Place seeds in mixing barrel of 5 gallon = 20 liters or larger capacity.  Barrel should not have any paddles, beaters, blades, or other protrusions = inside surface must be smooth and free of all obstructions.  Rotate barrel by hand or machine (like a cement mixer).

Slowly, add fine water mist until seeds are barely damp.

Add dry clay alternately with water mist while revolving barrel continuously.

When pellets are twice the diameter of the seeds continue turning the barrel for 3 to 4 minutes only, just until pellets look glossy.

DO NOT OVER-ROTATE BARREL OR SEED PELLETS WILL STICK TOGETHER!

Gently pour seed pellets onto screens to dry in a well-ventilated place.

Store air dried seed pellets in waterproof containers in a dry place until needed.

Biological No-Till Small Grains:     Broadcast seed pellets by hand or use a rotary spreader.  Sow pellets directly into standing vegetation so that soil remains undisturbed.  (Broken soil stimulates weed germination).

Alternatively, drill pellets using a no-till seeder equipped with sharp coulters and chisel tines or cultivator blades to cut narrow slits in the soil.  (The goal is minimal disturbance of soil surface and plant cover).

Wait patiently until rains come and seeds germinate.

Do not use chemical fertilizers, herbicides, pesticides, or fungicides on fields.  Do not weed by hand nor cultivate by machine.  Control weeds by sowing grain with Dutch White Clover (Trifolium repens) if necessary.  Irrigation is optional, but not essential.

2 to 4 weeks before harvest sow pelletized seed of second crop into standing vegetation of first crop.  This is necessary to control weeds.

When grain is threshed, return all straw and chaff to the field and spread randomly so following crop can grow up through the mulch.

Continue rotating grain crops taking special care to over-seed following crop 2 to 4 weeks before harvesting preceding crop.

This technique works best in climates warm enough to grow 2 grain crops yearly:  A winter grain crop and a summer grain crop.  In cooler climates substitute a short season crop like Buckwheat (Fagopyrum esculentum) or Turnips (Brassica rapa subspecies rapa)  for the summer grain crop. 

TO CONTROL WEEDS IT IS ESSENTIAL TO KEEP SOIL COVERED WITH GROWING PLANTS AT ALL TIMES = 365 DAYS YEARLY.  USE CLOVERS OR OTHER COVER CROPS TO FILL UP EVERY DAY OF THE GROWING SEASON.  SOIL SHOULD NEVER BE LEFT BARE, NOT EVEN FOR A SINGLE DAY.

Subsistence Grain Farming:     Drill or broadcast seed into standing hay, pasture, range, stubble, or weeds.  For best results sow when grain naturally drops its seeds (most commonly in the Fall = dry or dormant season).  Use pelleted seed if broadcast sowing on soil surface.  Use naked or pelleted seed if planting by drill.  Wait for rain and hope for the best.  In years with good rainfall, subsistence yields will be 60% to 70% of conventionally planted grain crops.  In dry years the crop may not be worth harvesting for grain (but will make forage for cattle).  Even is no crop is harvested, surface vegetation protects land from erosion while roots improve soil structure and fertility.  Subsistence farming makes economic sense because production costs are minimal (seed + 1 pass across the field).  Low costs mean farmers reduce financial risk and gain higher returns on investment.

Seed Bombing:     Seed bombing is a technique used to re-vegetate degraded lands, or to surreptitiously plant vacant lots or other properties not owned by the cultivator = guerrilla gardening.  Seeds are mixed in a stiff clay paste, hand formed into marble to walnut-sized balls, then air dried and stored until planting.  The clay balls are randomly broadcast = bombed over the landscape (or discretely dropped where soil and micro-climate appear most favorable).  A planting density of 10 balls per square meter or yard is typically used for land reclamation projects.

How To Make Seed Balls:     Seed balls are much larger than pellets.  Typical seed balls are the size of large marbles or ball bearings and contain approximately 1/2 fluid ounce = 1 Tablespoon = 3 teaspoons = 15 milliliters = 15 cubic centimeters of clay.  Very large seed balls can be double this size = 1/4 cup or approximately the volume of a walnut in its shell.  Use the following recipe to make seed balls for land restoration projects:

1 part seeds + 3 parts finely sifted compost + 5 parts clay + 1 to 2 parts water = 9 to 10 total parts by volume.  Compost is necessary to provide symbiotic fungi essential for root growth.   Mix compost with 10% organic seed protectant (powdered chili pepper) if desired.  1 part organic fertilizer (phosphate rock or bone meal) can be substituted for an equal volume of clay powder to help establish seedlings in phosphorous deficient soils.  Other additives might include nitrogen-fixing bacteria or fritted trace elements, as needed.

Combine in order seeds, compost, clay, and water.  Mix gently until paste has uniform consistency like bread dough.  Portion paste with cookie scoops then shape balls by rolling clay between palms of hands.  Place tightly formed (crack free) balls in a single layer on screens to air dry in the sun.  Store bone-dry seed balls in a moisture-free, well ventilated place until ready to plant.

Carefully encase large seeds like maize, sunflower, peas, beans, lentils, pumpkins, squash, gourds, cucumbers, and melons in individual seed balls.  Mix all small seeded crops (including grasses, clovers, weeds, and wildflowers) randomly with the clay paste.

For land restoration projects choose seed mixtures carefully:  Best results are obtained by combining seeds of native plants that normally grow together in the wild.  It is good practice to include a wide range of species:  Cool and warm season plants, annuals and perennials, grasses, wildflowers, broadleaf plants, weeds, clovers and other legumes.  If budgets are tight or seed too expensive, obtain weed seeds from local grain elevators.  Elevator screenings are free or cheap and contain large amounts of weed seed.  Weeds are ideal species for colonizing bare soils.  Weeds heal the earth allowing less hardy species to become established.

Would You Like To Know More?     Please contact the Author directly if you have any questions or need additional information about pelleted seeds for agriculture and land reclamation.

Please visit:  http://www.worldagriculturesolutions.com  — or —  send your questions to:  Agriculture Solutions, 413 Cedar Drive, Moon Township, Pennsylvania, 15108 United Sates of America  — or —  send an e-mail to:  Eric Koperek = worldagriculturesolutions@gmail.com

About The Author:     Mr. Koperek is a plant breeder who farms in Pennsylvania during the summer and in Florida during the winter.  (Growing two generations yearly speeds development of new crop varieties).

Advertisement

LIVING MULCHES FOR WEED CONTROL

Long before there were herbicides, diesel tractors, or rotary cultivators, smart farmers learned to manage their weeds.  How did they do it?  Here’s how:

Living mulches suppress weeds, reduce soil erosion, enhance soil fertility, attract beneficial insects, and help retain soil moisture.  The best living mulches are low-growing, nitrogen fixing legumes.  Dutch White Clover (Trifolium repens) is a good example.

Before seeding clover or any other living mulch, remember that two crops are growing on the same land at the same time — the mulch crop and a cash crop.  Success requires careful management or both crops may fail.

All living mulches compete with their companion crops.  The extent of competition and consequential yield loss vary with management and crop type.  For example, under drought conditions shallow rooted crops generally show more yield loss than deep rooted crops.  Low or slow growing crops may be overwhelmed by more aggressive companion crops.

As a general rule, living mulches are not recommended where drought is expected because yield losses are too high.  However, many crops benefit from clover mulches during dry conditions — the clover shades the soil, retards evaporation, and increases humidity around the cash crop.

Transplanting Vegetables into Clover

Dutch white clover makes good living mulch for TRANSPLANTED vegetable crops provided:  (1)  Crops are irrigated,  (2)  Crops are fertilized, and  (3)  Crops are protected for the first 4 to 6 weeks from competition by the clover.

1 to 2 inches of water are needed weekly to grow both clover and vegetables without undue competition for moisture.  If water is limiting, it is best to drip irrigate the cash crop rather than water the entire field.

Nitrogen fertilizer is not often required for small grains but is recommended for maize, fruits and vegetables.  The reason is that clover fixes about 100 pounds of nitrogen per acre but these nutrients are not immediately available — they are retained by the living mulch.  Phosphorous and potassium should be applied according to crop requirements along with lime to correct soil acidity.  Dutch white clover needs sulfur and responds well to powdered agricultural gypsum at 2 to 3 tons per acre.

Dutch white clover grows only 6 to 8 inches high so there is little competition for light except when crops are young.  Mow a narrow strip where transplants will be set, or apply a circle of mulch around transplants to give crops a head start.  Once crops are established they will overgrow the clover and produce normal harvests.

Aggressive, fast-growing crops like tomatoes, peppers, okra, melons, squash, sweet potatoes, gourds & pumpkins all do exceptionally well when transplanted into Dutch white clover.  Cucumbers are slower growing and require extra mulch to protect them from early season competition with the clover cover crop.

Stake-less = self-supporting tomato varieties (with thick upright stems) grow well in Dutch white clover.  The living mulch keeps fruits clean and allows easy harvest even in rain-soaked fields.

Once established, Dutch white clover is an aggressive mulch crop that blots out most weeds.  Walk the fields and hand pull any weeds that escape the clover.  Alternatively, thin weeds to at least 1 yard or 1 meter apart.  Thinly spaced weeds will not significantly affect quality or yields of cash crops (but will provide food and shelter for beneficial insects).  Weedy fields often require little or no insecticides to control crop pests.

Direct Seeding into Standing Clover

Dutch white clover is not well suited to direct-seeded crops, especially those with small seeds or slow germination.

Common potatoes are an exception, especially if whole tubers are planted to establish the crop.  Roto-till a narrow strip just wide enough to get the seed potatoes in the ground.  After planting, over seed tilled rows with additional clover seed to maintain soil coverage.  The potatoes grow through the clover without trouble.  Fall potatoes (planted after hard frost in November) averaged 22.8 tons per acre when grown in irrigated Dutch white clover.  Adjacent non-irrigated fields averaged 16.4 tons per acre, the yield loss due to water competition.

Costa Rican Indians grow dry beans by broadcasting seed into the weediest fields available.  The weeds are then hand cut and left as mulch to protect the germinating beans.  Yields are low, only 400 to 500 pounds per acre, but there are no costs other than labor for planting and harvesting.

The same technique works with Dutch white clover.  Spring turnips broadcast into standing clover averaged 10.8 tons per acre when the clover was intensively grazed for 3 days and the seed stomped into the soil by sheep.  Adjacent plots mowed 1-inch high averaged 14.3 tons per acre.  Control plots (no grazing or mowing) averaged only 0.90 tons per acre because of intense competition from the clover.  In comparison, winter turnips (sown after the first snow) averaged 13.1 tons per acre.

These results demonstrate the importance of timing when sowing any small-seeded crop into Dutch white clover.  Ideally, seed should be sown when the clover is dormant.  The next best choice is “sow and mow” (or sow and graze).

Direct seeding into standing clover is not recommended unless the clover is knocked back to reduce competition with the primary crop.

In non-irrigated, non-fertilized fields, flint corn transplanted on 40 inch centers into mown Dutch white clover averaged 68 bushels per acre (along with 1,300 pounds of dried beans and 9,600 pounds of pumpkins).  Adjacent fields transplanted into Red Clover (Trifolium pratense) were overwhelmed and failed to make a crop.

Careful timing is essential when planting mixed crops into living mulches or bare soil.  For example, in a maize-bean-pumpkin polyculture, the primary maize crop should be at least 18 inches high (4 to 8 leaves) before beans or pumpkins are sown, otherwise the grain will be smothered by the companion crops.

Strip cropping combines the pest control advantages of polycultures with the high efficiency of mechanized agriculture.  For example, fields seeded into mown Dutch white clover with 4-row strips of maize alternated with equal width strips of dry beans and winter squash (maize-beans-maize-squash, et cetera) out yielded individual crops grown as monocultures.  The yield advantage for maize alone averages 15% when grown in narrow 4-row strips with other companion crops.  Yield increases from strip-cropping are attributed to better light penetration into the maize canopy, and reduced pest populations in the beans and squash.

Living mulches work especially well with intensive horticulture systems like truck farms and market gardens where careful management and judicious cultivation (including mulching and mowing) prevent the companion crops from overgrowing the cash crops.  When crops are planted into living mulches, entire farms (up to 25 acres) can be run with only a small rear tined roto-tiller and common lawn mower.  Leaving strips of hay, wildflowers, and clover between cash crops and around field borders creates a sanctuary for beneficial predatory insects that help keep pest populations under control.

Seeding Small Grains into Clover

Seeding small grains into living mulches works best when:  (1)  The companion crop is dormant or its growth retarded by mowing, grazing, or rolling, and  (2)  The grain crop is selected for a competitive growth habit.  Heirloom (non-dwarf) varieties usually pair well with understory legumes like Dutch white clover.  Alternatively, clover can be broadcast into standing grain that is well established (8 to 12 inches high).  Again, careful timing is essential to prevent the cover crop from overwhelming the cash grain.

In non-irrigated, non-fertilized fields, fall seeded wheat averaged 28.1 bushels per acre when broadcast into dormant clover.  Spring seeded wheat averaged 21.6 bushels per acre when the crop was “frost seeded” (planted in frozen soil).  Late spring “sow & mow” wheat averaged 19.9 bushels per acre while wheat broadcast into standing clover barely made a crop, only 3.4 bushels per acre.  In comparison, broadcast planted spring wheat top-seeded with clover when the wheat was 8 inches high averaged 15.4 bushels per acre.  To put these yields in perspective, conventionally drilled & cultivated spring wheat (without clover) averaged 39.7 bushels per acre (without irrigation) and 78.5 bushels per acre (with irrigation).

Extra water and fertilizer reduces competition for moisture and nutrients resulting in higher yields.  In irrigated, fertilized fields, fall seeded wheat averaged 70.4 bushels per acre when broadcast into dormant clover.  Frost seeded spring wheat averaged 56.5 bushels per acre, while late spring (sow & mow) wheat averaged 61.9 bushels per acre.  Spring wheat broadcast into standing clover failed to make a crop, while clover sown into standing 12 inch high wheat averaged 74.7 bushels per acre.

Sometimes Old Ways are Best

The clover-wheat-turnips rotation common during the Renaissance is a good example of how cover crops and living mulches can be integrated with modern low-till and no-till agriculture.  Typically, the clover cover crop was “hogged down” (uprooted by foraging pigs); this eliminated the need to plow and harrow.  Wheat was then broadcast by hand and the seed trod into the ground by sheep or cattle.  Turnips were broadcast into the wheat as the heads were filling out, and clover was broadcast over the turnips a few weeks before harvest.  This rotation reliably averages 40 bushels of wheat per acre under European weather conditions without the need for irrigation, synthetic fertilizer, machinery, fossil fuels, or agrochemicals.  (Favorable rain or irrigation boosts this average to 80 bushels per acre).  Low production costs more than compensate for modest yields, a primary consideration for most farmers operating on slim profit margins.

Thoughtful Weed Management

The key point to intelligent weed control is to disturb the soil as little as possible, just enough to get a crop into the ground.

Remember that weeds have evolved specifically to rapidly colonize bare soil.  The more soil is tilled, the more weeds are stimulated to grow.  Conventional bare earth agriculture invites weed invasions.  In order for crops to coexist with weeds and living mulches, a different approach is needed.  Ideally, crops should be over seeded or transplanted with the minimum possible disruption to both soil and surface vegetation.  Often, specialized equipment is needed.  For example:  Why dig a long furrow when only a few discrete holes are needed for seeding?

Without irrigation and fertilization, competition between living mulches and cash crops can reduce yields 50% or more.  Poor judgment (such as seeding at the wrong time) can result in crop failure.

Clearly, there is significant competition from living mulches; the question is whether the savings from reduced tillage and other costs are outweighed by observed yield reductions.  These differences may not be significant depending on how the crops are marketed.  For example, the premium for “organic” produce and the profits from artisan breads are substantial.  In this case, lower yields are offset by higher margins from specialty products sold to niche markets.

Agronomy Notes

>>>  Dutch white clover and winter wheat can be seeded at the same time.  Remember to plant only after the Hessian Fly Date for your area.  This technique works well with all winter grains.

>>>  Top seeding Dutch white clover usually requires a separation of 7 to 14 days between plantings (about the time it takes for the cash crop to germinate).  Slower growing crops need more time to become established.  For example, sweet corn should be at least 6 inches tall before over seeding with Dutch white clover.  Rule-of-Thumb:  Maize should have 4 to 8 leaves (16 to 24 inches tall) before top seeding with Red Clover (Trifolium pratense) or any other type of tall growing clover.

>>>  Organic herbicide may be used instead of mowing, grazing or cultivation to control Dutch white clover prior to planting a cash crop.  For example, a narrow strip of clover can be killed with herbicide before transplanting vegetables.  Use spray shields to prevent herbicide drift.  It is important to disturb as little of the living mulch as possible — kill just enough clover to get the crop established.  Removing too much plant cover favors weed growth.

>>>  If clover seed is unavailable or too expensive, use weeds as living mulch.  This technique works best with fast growing vine crops.  For example:  Choose the weediest field available then transplant melon seedlings on 10 to 12 foot centers.  Mulch each transplant liberally with straw or any other convenient material.  Mulch is necessary to keep weeds at bay only until vines begin to run.  Once started, vines will overgrow the nurse crop.  Melons thrive in the light shade of weedy fields.  As an added benefit, vines growing among weeds rarely have insect problems.

>>>  Red Clover (Trifolium pratense) seed is usually less expensive than Dutch white clover (Trifolium repens).  Sweet corn, popcorn, flint corn, flour corn, pod corn, and dent corns all grow well when planted with red clover.  Top seed = over seed maize with red clover at the last cultivation or when plants have 4 to 8 leaves.  The corn plants are tall enough (about 1 1/2 to 2 feet high) so that competition with the living mulch is minimal.

>>>  Any type of maize can be seeded directly into standing red clover using a no-till planter with a fluted coulter.  Two weeks later the field should be closely mowed with a swathing board and divider to keep the clover from falling on the planted rows of corn.  Alternatively, clover can be mowed directly before seeding.  Watch regrowth carefully; a second mowing may be required 2 weeks later.  No herbicides are needed if maize is planted into standing clover; nitrogen fertilizer is not required if clover has grown on the land for 1 or more years.

>>>  Maize is sensitive to drought, especially during pollination and when ears are filling out.  For highest yields apply 1 to 2 inches of water weekly to prevent moisture competition between crop and living mulch.

>>>  Planting hybrid sweet corn into standing red clover yields about 415 sacks per acre on average when sweet corn is seeded 8 inches apart within rows and 30 inches between rows = 25,979 seeds per acre.  Actual plants per acre is approximately 21,000 (17% field loss rate is common).  1 sack = 52 ears = 4 baker’s dozen = 21,580 marketable ears per acre.  Note:  Yield figures are discounted 50% for typical losses to crows, deer, groundhogs, coons, earworms, undersize or poorly pollinated ears, and other causes.

>>>  It is best to use pelleted seed when hand dropping or broadcast seeding into living mulches.  This is especially true for large-seeded crops like peas, beans, maize, melons, and squash.  Pelleted seeds greatly increase germination and stand establishment rates.

>>>  Seedling survival and stand establishment are optimal when planting is done with no-till equipment.  Expect 20% to 25% loss rates when broadcasting naked, unprotected seed into living mulches or other standing vegetation such as hay or weeds.

>>>  Biological agriculture is all about managing little details, for example, choice of companion crop:  Flour corn top seeded with sweet clover (Meliotus officinalis) was overwhelmed and failed to make a crop.  Flour corn planted with standard (tall) red clover yielded 37.4 bushels per acre.  Flour corn planted with medium red clover yielded 41.8 bushels per acre.  Flour corn planted with Dutch white clover yielded 47.6 bushels per acre.  Yield differences were entirely due to living mulch height.  Taller clovers compete more strongly with maize cash crops, especially when corn plants are young.

>>  Every farm has different soil and micro-climate.  Agronomic practices that work in one field may fail in another.  For best results, every farmer should maintain one or more research plots so that new methods can be tested and adapted to local conditions.

Related Publications

Crop Rotation Primer; Biblical Agronomy; The Twelve Apostles; Managing Weeds as Cover Crops; Weed Seed Meal Fertilizer; Trash Farming; No-Till Hungarian Stock Squash; Planting Maize with Living Mulches; Organic Herbicides; Pelleted Seed Primer; Crops Among the Weeds; Forage Maize for Soil Improvement; Forage Radish Primer; and Rototiller Primer.

 For More Information

Readers who have any questions or require additional information about living mulches should contact the Author directly:

Please visit:  http://www.worldagriculturesolutions.com  — or —  send your questions to:  Eric Koperek, Editor, World Agriculture Solutions, 413 Cedar Drive, Moon Township, Pennsylvania, 15108 United States of America  — or — send an e-mail to:   Eric Koperek = worldagriculturalsolutions@gmail.com

Most agricultural universities publish extensive literature on cover crops, nurse crops, living mulches, green manures, and crop rotation.  Contact your County agricultural extension agent or search the Internet for relevant publications.

About the Author

Mr. Koperek is a plant breeder who farms in Pennsylvania during summer and Florida over winter.  (Growing 2 generations yearly speeds development of new crop varieties).