MANAGING WEEDS AS COVER CROPS

The trick to biological farming is knowing how to manage weeds.  “Manage” does NOT mean “kill”.

Internet trolls are bombarding my e-mail box with comments like:  “You can’t plant crops in weeds!  That’s why they invented tractors”.  Horse power is irrelevant and yes, you can plant crops in weeds:  I manage 90,000 acres without herbicides or mechanical cultivation.  Here is how I do it:

(1)  Manage Weeds as Cover Crops.  Think of weeds as a multi-species cover crop that costs nothing to seed.  This will save you about $40 per acre, right off the bat.  $40 x 90,000 acres = $3,600,000.  We are not talking tree-hugging here.  This is serious agronomy.

Grow weeds to protect your top soil.  A typical corn-soybean farmer in Iowa loses 2 1/2% of his land yearly = 20 tons of earth per acre = $450 per acre at $22.50 per ton (U.S. average top soil price, delivered).  Weeds have value.

If you don’t have enough weeds for a winter cover crop, seed 3 to 4 bushels of oats per acre.  Oat roots prevent soil erosion over winter.  Oats winterkill so no herbicides are needed.  Surface trash is minimal and will not interfere with conventional planting equipment.

(2)  RULE:  Keep Fields Green.  Photosynthesis is the process where plants use water, air and sunlight to make sugar.  More photosynthesis = more sugar = more plant growth = higher yields.  Bare fields are not profitable.  Smart farmers keep their soil covered with growing plants year-round.  Plant cash crops whenever possible.  Sow cover crops for mulch or fertilizer.  Seed weeds when there is no time or money to grow anything else.  The goal of biological farming is to produce the most possible organic matter per square foot.  Grow anything rather than leave soil bare.

The underlying principle of biological weed control is plant competition.  Keep the ground covered with growing crops year-round and weeds do not have a chance to get established.  Never leave the soil bare, not even for a single day.

For example:  Plant winter wheat into standing Dutch White Clover (Trifolium repens) using no-till equipment.  Next summer, harvest wheat then immediately (the same day) plant turnips into wheat stubble and clover living mulch.  Field stays green year-round.  Weeds cannot grow because they are constantly shaded by competing plants.

(3)  Sow Weed Seeds.  If you have tired, sick or dead ground, or no top soil, go to your nearest grain elevator and fill your truck with weed seeds.  These are usually free.  Some elevators charge a nominal fee for “elevator screenings” which contain many weed seeds.  Sow liberally, at least 40 pounds per acre.  Prepare for amazement.  Weeds are Nature’s Band-Aid, a fast growing cover crop evolved specifically to heal bare earth.  On steep slopes or mine reclamation sites, spread straw or spoiled hay mulch to protect germinating weeds.

(4)  Fertilize and Water Your Weeds.  Every time I say this, half my audience leaves the room.  No, I am not crazy.  Yes, I do know what I am talking about.  I farm without any government subsidies and each acre earns substantial profit.  It pays to feed and irrigate weeds (if possible).  Remember:  Weeds are a cover crop.  You want every field blanketed with a luxuriant jungle of weeds at least 6 feet high.  So water and fertilize as needed, and do not worry about what your neighbors say.  Farming is not about yields; farming is about the bottom line.  Weeds put money in your pocket.

(5)  Feed the Weeds and the Weeds will Feed Your Crops.  Weeds have enormous root systems in proportion to their stems and leaves.  Many weeds also have tap roots that plunge deep into the subsoil.  Translation:  Weeds are great at scavenging nutrients that would otherwise leach away.  Weeds have quick growth response to plant food so a little fertilizer goes a long way.  A few pounds of nitrogen create a vast jungle of vegetation that makes good mulch and fertilizer.  The average weed contains twice the nutrients of an equal weight of cow manure.  Broad leaf weeds rot quickly so fertilizer elements are rapidly recycled for crop use.  Plant crops and weeds together and yields often increase.  The reason is ecologic synergy = plant symbiosis.  Weeds both compete AND cooperate with neighboring plants.  Water and nutrients are shared so crops and weeds grow better.  I learned this lesson farming melons.  The best fruits came from the weediest fields.  So I started planting melons into weeds.  The weeds provided light shade and the melons followed weed roots down into moist subsoil.  Come drought and clean cultivated fields produced little or no crop.  Melons and weeds yielded fair crops.  Irrigated melons and weeds overfilled my trucks with fruit.  Think about this the next time you buy a drum of herbicide.

(6)  Use Weed Seed Meal Fertilizer.  How would you like to slash fertilizer costs?  Get weed seeds or screenings from your local elevator.  Grind them with a hammer mill or roller mill.  Broadcast 4 tons per acre or drop 10 pounds per 25 feet of row.  Unlike chemical fertilizers weed seed meal will not burn crop roots so you can hurl nutrients with wild abandon.  If you do not have any weed seeds, use any other waste seed like spoiled corn, brewer’s grain, or broken soy beans.

To use LIVE weed seeds as fertilizer broadcast seeds into a standing cover crop like Red Clover (Trifolium pratense).  Earthworms, ants, beetles and other critters eat the weed seeds.  Clover kills any weeds that germinate.  Caution:  Don’t try this unless you have a tall, aggressive cover crop that blankets the soil with dense shade.

(7)  RULE:  Apply Chemical Fertilizer Only to Growing Plants.  This rule covers all crops (including weeds) without exception.  It makes no sense to spread fertilizer on bare ground.  Chemical nutrients are wasted unless there are live roots waiting to absorb them.  For best results, synthetic fertilizers should be applied in small doses throughout the growing season, ideally diluted in irrigation water.  Feed growing crops only and well water stays pure = free of nitrates.

(8)  Good Farmers Grow Fungi.  The Fungi Grow the Crops.  Think of all the pipes, wires and roads needed to run a modern city.  Without these conduits life would be nearly impossible.  A corn field is no different.  Under the soil surface is a jungle of lifeforms, a whole zoo full of critters exceeding the combined population of the world’s largest cities.  And every one of these underground citizens depends on fungi for survival.  Millions of miles of microscopic fungi tie the underground world together.  Fungi are the interstate highway system of the soil ecology.  Water and nutrients are conveyed to hungry roots.  Plants share resources through fungal networks.  Many crops are so dependent on fungi that they cannot exist without these symbiotic micro-organisms.  Kill the fungi and the soil ecology collapses.  Yields plummet and fields become sick and barren.  Try to farm dead soil and you will spend vast sums for synthetic fertilizers, pesticides, and irrigation.  Today, this is called “conventional agriculture” and most growers lose money on every acre they plant.  There is a better way to farm.

Fungi like cool temperatures, a moist environment, plenty of air, and lots of organic matter.  Rip up the ground with plows and the fungal network is destroyed.  Soil temperatures spike, the earth is parched, a cyclone of oxygen rushes into the ground, and organic matter burns away in a firestorm of excess decomposition.  The result is like dropping a nuclear bomb:  Billions of critters die and the soil ecology is devastated.  Recovery takes years.

Sell your plows, disks and harrows — you don’t need them.  Grow weeds or other cover crops and leave the fungi alone.  Open the soil just enough to get seeds or transplants into the ground.  Further disturbance cuts profits and yields.

(9)  Till Your Fields with Earthworms.  My Grandfather taught me:  “Feed the worms and the worms will tend your crops”.  Common earthworms (Lumbricus terrestris) eat organic matter and excrete enough manure to grow 200 bushel corn = 11,200 pounds per acre.  They also burrow 6 feet into the subsoil.  My fields average 1 million worms per acre.  That’s about 23 worms per cubic foot = 1,200 miles of burrows per acre.  When thunderstorms drop 2 inches of rain per hour my neighbors’ fields wash away.  My soil stays in place.  When drought bakes the county, my corn yields over 100 bushels per acre (without fertilizer, herbicides, cultivation or irrigation).  How is this possible?  Plant clover and earthworm populations double.  I seed clover into weeds and the worms feast on the multi-species “salad bar”.  Mind you, this process does not occur overnight.  It took 12 to 15 years to wean my fields off synthetic nutrients.  That’s 4 to 5 generations of earthworms.  I used to borrow mountains of cash to buy farm chemicals.  Now I plant clover and have no debts.

(10)  Grow Your Own Fertilizer:  Conventional green manures are plowed into the soil.  A less invasive technology is called Chop-And-Drop.  Use a rotary mower, flail mower, bush hog, forage chopper, or common lawn mower to cut plants into small pieces that decompose quickly for rapid nutrient cycling.  Immediately sow or transplant another crop before weeds start germinating.  Alternatively, knock down cover crop with a roller-crimper or sickle-bar mower then plant through the mulch using no-till equipment.  For example, I sow Hairy Vetch = Winter Vetch = Vicia villosa in October then roller-crimp vines in May.  Vetch controls weeds and fixes sufficient nitrogen for 200 bushel corn or any other crop I want to grow.  Remember:  Chop plants into small pieces for fast-acting fertilizer.  Crimp or cut whole plants for mulch.  Finely chopped plants will NOT control weeds.

(11)  Use Mulch-In-Place.   Think of how much money you will save if you don’t have to buy herbicides or cultivate fields multiple times.  The savings in diesel fuel alone will pay for a 2-week vacation anywhere you care to go.  Let your neighbors plant seed in cold ground.  Be patient and give your weeds more time to grow.  Wait until the soil warms and weeds are at least 5 feet high.  Kill weed cover crop with a roller-crimper or sickle-bar mower then immediately seed or transplant through weed mulch with no-till equipment.  Mulch retards weed growth 4 to 6 weeks — just enough time for your crop to germinate and start covering the rows.  Once the crop canopy closes weeds are shaded and there is no more work until harvest.

There are many variations of Mulch-In-Place.  For example, use a forage chopper to deposit weed mulch into convenient windrows then transplant pumpkins or other fast-growing vine crops through the mulch.  Alternatively, mow strips through weed covered fields.  Transplant vine crops down mowed rows then roll out drip irrigation tape.  Use mowed weeds to mulch crops until plants are established.  Once vines begin to run they overwhelm weeds between rows.  Standing weeds protect vine crops from insect pests.

If you do not have weedy fields, sow winter rye = cereal rye = Secale cereale at 3 bushels per acre.  Roller crimp or sickle-bar mow when rye reaches 5 to 6 feet high or when grain reaches soft dough stage.  Immediately seed or transplant through rye mulch using no-till equipment.  Note:  Mulch-In-Place works with just about any cover crop that grows at least 5 feet high and produces 4 to 5 tons of mulch per acre.

Who needs Monsanto?  Grow mulch crops and never buy herbicide again.  Sell your spray rig and pay off farm debts.

(12)  Use Weeds to Control Insect Pests.  Plant weeds with your crops and you will never have to buy insecticides again.   Set 4 rows of tomatoes then leave a strip of weeds.  Seed 4 rows of sweet corn and leave another strip of weeds.  Plant 4 rows of sweet potatoes with a third strip of weeds.  Drill 4 rows of sunflowers and a fourth strip of weeds.   Alternate crops and weeds across fields and farms, following land contours.  Adjust strip widths to match planting and harvesting equipment.  Weeds provide food, shelter and alternate hosts for beneficial insects.  The good bugs eat the bad bugs.  Native weeds should cover at least 5% to 10% of every farm, even if you also grow insectary plants.  I learned this lesson the hard way.  I grew dozens of crops with small flowers especially to feed predatory and parasitic insects.  Biological control was only partly successful until I planted native weeds next to crops needing protection.  Close proximity is essential as many beneficial insects penetrate only 200 feet into a field over the course of a growing season.  Remember:  You need a mix of native weeds AND insectary plants to protect cash crops.  Maintain biological diversity and pests rarely cause economic damage.  I have not purchased insecticides (organic or synthetic) in 18 years.

(13)  Plant into Standing Weeds (Sow-And-Go).  This works best with fall planted winter grains like wheat, barley, and rye.  Seed directly into standing vegetation using no-till equipment.  (Standing weeds trap winter snow).  If desired, you can seed Dutch White Clover (Trifolium repens) at 8 to 12 pounds per acre with winter cereals.  The clover provides 90% to 95% weed control, about as good as glyphosate (Roundup).  Expect 60% to 70% of conventional yields without fertilizer or irrigation.  In a dry year you might lose your crop.

If you do not have no-till equipment, try surface seeding = Sow-And-Mow.  This works best with pelleted seed.  Broadcast seed into standing weeds then immediately roller-crimp or cut vegetation with a sickle-bar mower to cover and protect germinating grain.  Come back next summer and harvest your crop.

Alternatively, broadcast winter grain into standing weeds then mow with a rotary mower or flail mower to chop vegetation into small pieces.  Immediately till field with a rear-tine rototiller set to skim soil surface at 2 inches depth.  Make only 1 pass across field.  Your field will look ugly but will make a good crop = 40 bushels (2,400 pounds) of wheat per acre in cool, temperate climates with 40 or more inches of rainfall yearly.

If you have no farm machinery, try the ancient Roman practice of Stomp Seeding.  Fence field securely.  Broadcast seed into standing vegetation.  Turn in livestock (cattle, sheep or goats) until they eat about 1/2 of the vegetation and stomp the other half into mulch.  Livestock must be well crowded in order to make this work.  Allow each animal only enough space to turn around = use very high stocking densities = mob grazing.  For example, 600 to 1,200 cows per acre.  Directly forage is exhausted, move livestock to a new enclosure or fresh pasture.  If field is “tired”, “sick” or barren, feed livestock in their enclosure until they deposit 1/2 to 1 pound of manure per square foot = about 11 to 22 tons per acre, then move animals to another enclosure.

(14)  Plant into Living Mulches.  This is ideal for transplants or crops with large seeds.  For best results use no-till equipment and low-growing legumes like Dutch White Clover (Trifolium repens) or Crimson Clover (Trifolium incarnatum).  Seed Dutch White Clover at 8 to 12 pounds per acre, or Crimson Clover at 14 pounds per acre.  Seed or transplant directly cover crop reaches mature height of 6 inches for Dutch clover or 12 inches for Crimson clover.  It is good practice to mow clover before planting to give crops a head start.  Watch field carefully.  When the FIRST seedling emerges, immediately mow field as close to soil surface as possible.  If clover is especially vigorous, it may be necessary to mow again 2 weeks later.  Note:  If desired, you can grow corn (Zea mays) with tall-growing Red Clover (Trifolium pratense) using the same method.  No fertilizer, herbicides or cultivation are necessary if clover grows a full year before planting maize.

Planting into clover is a good way for farmers to learn how to work with weeds.  Clover is convenient to grow because its height is easily controlled.  Alternatively, you can make your own cover crop mix and use this as a substitute for naturally weedy fields.  Combine 2 cool season grasses + 2 cool season legumes + 2 cool season broad leaf plants + 2 warm season grasses + 2 warm season legumes + 2 warm season broad leaf plants + 2 root crops (tillage radish, stock beets, or turnips) = 14 species cover crop mix.  Plant at least 20 pounds per acre.  If desired, more species can be added.  For best economy, select cheap seed to keep costs below $40 per acre.

Remember:  All living mulches compete with their companion crops for water, light and nutrients.  For example, Dutch White Clover grows only 6 inches high but this is enough to shade the lower stems of wheat.  Plant Dutch clover with tall wheat varieties and yields are normal.  Seed Dutch clover with semi-dwarf or dwarf wheat and yields may drop 30% to 50%.  Use common sense when pairing cash crops with clover, weeds, or any other living mulch.  Combine tall varieties with low-growing cover crops.  Water and fertilize for both cash crop AND cover crop.  If necessary, retard or kill companion crop by mowing, mulching or roller-crimping.

(15)  Grow Crops and Animals Together.  2,000 years ago the Romans discovered that manure is more profitable than meat.  It pays to keep animals just for their manure.  Pastures grow better when grazed.  Crops grow better when dunged.  There is a significant difference in growth between plants fed manure or artificial nutrients.  No one has yet figured out why.  Drive a herd of cattle into high weeds (or a mixed species cover crop).  Let the cows graze until they have eaten 1/2 of the forage and stomped the rest.  Move herd to fresh pasture then immediately sow small grains or other crops with no-till equipment.  No herbicides, cultivation or chemical fertilizers required.

The cheapest way to keep livestock is to graze them on fresh, green grass.  Move herds to new pasture at least once daily and do not re-graze paddocks until forage has recovered.  This is called rotational grazing and eliminates the costs of building barns, making hay, and spreading manure.  If you don’t have tidy pastures seed mixed-species cover crops or graze native weeds.  What the cows don’t eat the goats will, and what the goats don’t like the sheep will relish.   Range chickens 3 or 4 days behind cows and the birds eat the fly maggots.  Nothing goes to waste and meadows stay clean and sanitary.

Not all weeds are good to have around.  When weeds get out of control there are 2 easy ways to recover ecologic balance:  (1)  Grow cover crops in series, or  (2)  Graze with mixed livestock.  Cover crops overwhelm weeds by shade and competition.  Mixed livestock eats everything in sight.  Either way, problem weeds are eliminated and crop rotation can proceed normally.

(15)  Think Unconventionally.  If everyone around you grows corn, plant something else.  If everyone says you have to spray, don’t.  Conventional wisdom is often just plain wrong.  Do not be afraid to experiment.  Every year I reserve about 2% of my land for agricultural research.  I learned to farm by doing the opposite of what the “Experts” advised.  Along the way I have enjoyed amazing success and spectacular failure.  Both are equally instructive.  Monsanto says weeds are bad and should be eradicated.  I think differently.  For example, in my garden (a jungle of weeds), I thin Bull Thistles (Cirsium vulgare) until they stand about 1 foot apart, then I plant 1 pole bean seed per thistle plant.  The beans climb the thistles and I do not have to cut poles.  My spray-by-the-calendar neighbors told me to cut the weeds or mulch them into oblivion.  Instead, I conducted a paired comparison of 100 beans on thistles with 100 beans on poles.  Thistles beat poles by a slight margin, 3.55% over a 5-year trial.  This is only one of many examples of symbiosis between weeds and crops.  Widely spaced weeds often increase crop yields.  I don’t recommend planting beans and thistles on a commercial scale, but neither do I insist on weed-free fields.  Weeds spaced 3 feet apart (about 5,000 weeds per acre) no longer bother me.  The tomatoes don’t seem to mind and I don’t have to spray for hornworms.  Learn from nature or buy from Monsanto.

Related Publications:  Weed Seed Meal Fertilizer; Trash Farming; No-Till Hungarian Stock Squash; Planting Maize with Living Mulches; Living Mulches for Weed Control; Pelleted Seed Primer; Crops Among the Weeds; Forage Maize for Soil Improvement; and Rototiller Primer.

Would You Like To Know More?  Please visit:  http://www.worldagriculturesolutions.com  — or —  send your questions to:  Eric Koperek, World Agriculture Solutions, 413 Cedar Drive, Moon Township, Pennsylvania, 15108 United States of America  — or —  send an e-mail to:  worldagriculturesolutions@gmail.com

About the Author:  Mr. Koperek is a plant breeder who farms in Pennsylvania during summer and Florida over winter.  (Growing 2 generations yearly speeds development of new crop varieties).

 

 

 

 

Advertisements

EARTHWORM PRIMER

“Biological Agriculture” relies on earthworms and other soil critters to do what plows and synthetic chemicals do in conventional agronomic systems.  Follow the advice below to encourage worm populations in your fields:

–>     There are many species of earthworms around the world.  The most common agricultural species in North America and Europe are the Common Garden Earthworm = Nightcrawler = Lumbricus terrestris, and the Manure Worm = Redworm = Eisenia foetida.  These are the most prevalent species sold by worm hatcheries for fish bait and farming.

–>     Nightcrawlers dig vertical burrows deep into the subsoil.  At night the worms rise to the soil surface to feed = they drag bits and pieces of leaves and other organic matter down into their tunnels.  Walk through a field at night with a flashlight and you will see many earthworms.

–>     Manure worms live close to the soil surface and do not dig vertical burrows.  Redworms are specialized to eat manure and so they are rarely seen except around the base of compost piles or in fields where many animals graze.

–>     31 nightcrawlers or manure worms per ounce; 500 worms per pound; 1,000,000 worms = 2,000 pounds = 1 ton.  1 average earthworm (Lumbricus terrestris) or manure worm (Eisenia foetida) from a commercial hatchery weighs 0.002 pound = 0.032 ounce = 0.9072 gram.

–>     Active, adult earthworms (Lumbricus terrestris) eat their body weight in soil and organic matter daily.  Sluggish worms, immature worms, and worms of other species may eat only 10% to 30% of their body weight each day.  1,000,000 common earthworms per acre (about 23 worms per square foot of topsoil 12 inches deep) = 1 ton of earthworm castings = worm manure DAILY during the growing season.

–>     Usage Note:  1 earthworm cast, 2 earthworm casts, many earthworm castings.

–>     Average daily worm cast is about 0.90 gram although weight of surface casts is considerably greater and varies widely.  Average surface cast weight is approximately 10 to 14 grams or about 0.30 to 0.50 ounce.  Surface worm cast weight ranges up to about 2 ounces in temperate climates and considerably more in tropical areas, depending on worm species, soil type, and available food.  For example, 1 average adult earthworm (2 to 3 years old) living in a bed of compost in a tropical climate can produce 10 pounds = 4.54 kilograms of castings annually ~ 12.4 grams ~ 0.43 ounce of castings daily.

–>     Average surface cast volume is approximately 1 Tablespoon = 15 milliliters (plus or minus 7 milliliters).

— >     Earthworms are most active in early spring and mid fall when weather is cool and moist.  Ideal soil temperature = 65 degrees Fahrenheit.  Earthworms are less active during hot, dry summer months.  Earthworms rise to the surface to feed at night then sound to lower soil depths each morning when temperatures rise.

–>     Do not plow in spring or fall if practical as this kills many worms.  Do not plow, cultivate, or spray in early evening, after dark, or early in the morning as this kills many worms.  The best time to till, cultivate, or spray is in the afternoon when temperatures are highest and worms have retreated to cooler soil depths.

–>     Keep fields planted with cover crops in spring and fall to feed worms.  They need much food at this time.

–>     Don’t leave soil bare over winter.  Protect winter fields with an insulating blanket of crop residues, mulch, or cover crops.  1 or 2 inches of organic matter can double earthworm populations.

–>     Earthworm populations increase in direct proportion to the amount of organic matter on the soil surface = leaves, twigs, straw, et cetera.  More cover = more protection & more food = higher worm populations.  Keep the soil mulched or covered with growing plants at all times.  2 inches of mulch double worm populations compared to cornfields where whole stalks are left on soil surface.

–>     Baby earthworms when they hatch from their cocoons = egg cases are very small, only 1/2 to 3/4 inch long.  Earthworms are extremely vulnerable when first hatched.  Do not plow, cultivate, or spray when worms are hatching.

–>     Earthworms need protein in their diet.  Worm populations double on legume fields compared to grass fields.  Earthworms especially favor clovers, particularly white clover.  Include legumes in field rotations, pastures & hay fields, cover crop mixes, and living mulches.

–>     Earthworms breed and grow very slowly.  Baby worms take 2 to 3 years to mature.  A plentiful, steady food supply is essential to support maximum breeding and population growth.  More organic matter (roots, stems, leaves) = more food = faster population growth = more worms.

–>     Earthworms do not spread rapidly.  A worm colony might spread 3 feet in a year.  That’s as fast as earthworms go.  To “seed” worms drop 6 nightcrawlers every 30 feet then immediately cover with a generous heap of mulch, compost, or manure = whatever worms are used to eating.  It takes at least 10 years for worm colonies spaced 30 feet apart to spread across an acre-sized field.  1 acre = 43,560 square feet = 4,840 square yards ~ 0.404 hectare.

–>     Adult worms are particularly sensitive to dietary changes.  For example, worms raised in hatcheries die if placed in corn fields because they have problems adapting to new, strange foods.

–>     Do not try to seed Manure Worms = Eisenia foetida in crop fields.  The manure worms will die because they are not adapted to this environment.  Use only nightcrawlers = Lumbricus terrestris for agricultural development, mine reclamation, terraforming, reforestation, and similar environmental restoration projects.

–>     If you need to seed worms, talk to the hatchery and ask for their best deal on earthworm cocoons.  Baby worms adapt quickly to any food available.  Mix egg cases gently with screened peat moss, corn meal, sifted compost, or similar carrier then “plant” with a common grain drill.

–>     Switching from conventional tillage to no-till does not happen overnight.  Conversion speed is entirely dependent on earthworm food supplies.  There is no solution for worms’ low natural reproduction rates.  Buying more worms or egg cases won’t make the process go any faster.  You can’t fix this problem by throwing money at it.  Patience is required.  You won’t see substantial improvements in soil structure or fertility until the fourth or fifth year of no-till ~ 2 earthworm generations.  Dramatic differences become smack-upside-the-head obvious by the 7th or 8th year without plows ~ 4 worm generations.  Conversion speed is controlled by how many tons of organic matter are added to each field.  Start looking at crops in terms of their biomass production.  This game is all about weight.  The farmer with the most tons wins!

–>     Tillage kills earthworms.  Loses depend on plow type, tillage depth, and time.  Chisel plows are the most destructive, disk plows slightly less so.  Old fashioned moldboard plows are the least destructive of all conventional tillage implements.  Chisel plows kill 3 times as many earthworms as moldboard plows.

–>     RULE:  Less tillage is better than more tillage.  Shallow tillage is better than deep tillage.  “Warm tillage” (afternoon & summer) is better than “cool tillage” (spring, fall, morning, evening, and night).

–>     Till just enough to get your crop in the ground.  Disturb the soil as little as possible.  All you need is a small hole to set transplants or a narrow slot to sow seeds.  It is rarely necessary to till more than 2 inches deep (unless you are planting potatoes).

–>     No-Till is better than strip till which is better than ridge till which is better than whole surface conventional plowing.

–>     Rear mounted rototillers are ideal tools for shallow tillage.  For example:  Broadcast winter wheat and Dutch White Clover = Trifolium repens into standing weeds or cover crop.  Mow vegetation then rototill only 2 inches deep to get seeds into the ground.  Irrigate to firm seedbed or wait for rain.  Your field will look rough and trashy but the litter is necessary to prevent wind and water erosion.  Some seeds will be buried too deep, others too shallow, but enough will germinate and survive to produce a good crop.  If soil is too wet, omit rototilling.  You will still make a profitable crop.  Small seeds do not absolutely need to buried in earth.  Cut weeds or nurse crop will cover and protect seed.

–>     Earthworms do not “like” to eat maize leaves and they especially dislike whole corn stalks and cobs.  Continuous corn = planting maize in the same field year after year reduces earthworm populations to minimal levels.  For best results use a stalk chopper or forage chopper to shred dead corn plants so they decompose faster.  Plant maize into a living mulch of Red Clover = Trifolium pratense or other nitrogen fixing legume.  Follow corn with fall turnips or other cover crop to feed and protect worms over winter.  Rotate corn with legumes or other broad leaf cover crops.  Do not follow maize with a grass or cereal crop unless also planted with a companion crop of clover or other legume.  Broad ecological diversity favors large earthworms populations.  Translation:  Worms like a varied, balanced diet.

Example:     Plant forage maize at 80,000 to 100,000 seeds per acre to kill weeds.  Flatten with a roller-crimper or cut with a sickle bar mower after 70 days (18 tons biomass) or approximately 110 days (30 tons biomass per acre).  This is called Mulch-In-Place.  Direct seed pumpkins or squash through the corn mulch with a no-till seeder.  At the same time, broadcast Dutch White Clover = Trifolium repens or other low growing legume over field.  Clover fills any gaps in the mulch and provides earthworms with a “balanced diet”.  Result:  95% or better weed control and few insect pests.  Mulch keeps fruits clean so farmer gets premium prices for his pumpkins.

Note:     Mulch-In-Place is used to grow crops without herbicides.  Popular mulch crops include Winter Rye = Cereal Rye = Secale cereale in temperate climates and Sunn Hemp = Crotalaria juncea in tropical and subtropical climates.

–>     Adult earthworms can live 9 or more years in captivity.  How long worms live in the wild is unknown.

–>     Worms constantly maintain their burrows which often extend 5 to 6 feet into the subsoil.  About the diameter of a pencil, worm holes are essential for aeration and drainage of natural soils.  Fields with populations of 1 million earthworms per acre typically contain approximately 900 to 1,200 MILES of tunnels.  These tubes are lined with “earthworm cement”, a natural glue that keeps tunnels open many years after resident earthworms have died.  Plant roots follow earthworm burrows deep into the subsoil where moisture levels are relatively constant.  This is why crops grown in biologically managed fields have considerable drought resistance.  (Crop roots also follow weed roots into the subsoil, especially weeds with deep taproots.  This is why melons grown in weeds make a crop in dry years while clean cultivated vines shrivel and die).

–>     If agricultural wastes are plentiful earthworms can be fed just like crop plants on an irrigation schedule.  Apply weed seed meal, spoiled corn meal, dried brewer’s grains or similar DRY organic “fertilizer” at 2 Tablespoons (1/8th cup) per square foot ~ 1 ounce per square foot ~ 5 pounds per 100 square feet ~ 1 ton (2,000 pounds) per acre.  Apply WET materials like spent brewer’s grains or fresh cow manure at 8 Tablespoons (1/2 cup) per square foot ~ 4 ounces per square foot ~ 25 pounds per 100 square feet ~ 5 tons per acre.  Broadcast worm food on soil surface.  Reapply as needed when food is eaten = no longer visible on soil surface.

–>     Ammonia based nitrogen fertilizers kill earthworms.  The worst form is anhydrous ammonia gas.  Liquid ammonia fertilizers are far less injurious.  Note:  Organic fertilizers can also be lethal.  Excessive amounts of manure lagoon effluent decimate worm populations.  It is good practice to irrigate before applying ammonia or any fertilizer, chemical or organic.  (Irrigation prevents plants from absorbing too much fertilizer at once.  Over-fed plants attract insect pests).

–>     RULE:  Chemical fertilizers (or manure lagoon effluents) are best applied in small amounts throughout the growing season, ideally diluted in irrigation water.  For best results do not apply fertilizers to bare soils; apply nutrients only to growing plants.  Earthworms are quite sensitive to concentrated chemicals, organic or synthetic.

–>     To stabilize ammonia in animal manures mix with 5% phosphate rock powder by weight (100 pounds of phosphate rock per ton = 2,000 pounds of manure).  Store under cover until needed.  Spread or incorporate manure on field then immediately seed with Buckwheat (Fagopyrum esculentum) or other phosphorous absorbing cover crop.  (Mixing phosphate rock with manure greatly increases phosphate availability to crops.  Organic acids in manure make phosphorous soluble).

–>     Concentrated chemical fertilizers (especially nitrogen) decrease soil organic matter and earthworm populations.  Spread supplementary organic matter on fields where chemical nutrients are applied.  Whenever practical use organic fertilizers to encourage earthworm growth.

–>     How Earthworm Populations Vary by Soil Type and Land Use

50,000 worms/acre ~ 1  worm/square foot:  Moldboard Plowed Continuous Corn; Acid Peat Soils.

80,000 worms/acre ~ 2 worms/square foot:  No-Till Continuous Corn with Herbicide.

150,000 worms/acre ~ 3 worms/square foot:  Fine Gravel Soils; Coarse Sandy Soils; Medium & Heavy Clay Soils.

170,000 worms/acre ~ 4 worms/square foot:  Bare Earth Orchards (Conventional Cultivation); Alluvial = Silt Soils; Light Clay Soils; Heavy Loam Soils.

225,000 worms/acre ~ 5 worms/square foot:  Medium Loam Soils; Fine Sandy Soils.

250,000 worms/acre ~ 6 worms/square foot:  Chisel Plowed Corn & Soybeans Rotation; Chisel Plowed Continuous Soybeans; Light Loam Soils.

500,000  worms/acre ~ 12 worms/square foot:  No-Till with Herbicides.

650,000 worms/acre ~ 15 worms/square foot:  Moldboard Plowed Continuous Soybeans.

1,000,000 worms/acre ~ 23 worms/square foot:  Biological No-Till (Rye Mulch-In-Place); Orchards with Mixed Grass & Legume Sod; Undisturbed Tall Grass Prairies & Hay Fields; Natural Alpine Meadows.

1,300,000 worms/acre ~ 30 worms/square foot:  Biological No-Till with Mixed Species Cover Crops; Fields Fallowed 5 Years (Mostly Broad Leaf Weeds).

2 million worms/acre ~ 46 worms/square foot:  Continuous Clover Living Mulch; Organic Gardens; Dairy Pastures; Manure Fertilized Fields (22 Tons per Acre Yearly).

3 million worms/acre ~ 69 worms/square foot:  Year-Round Mulch 8 Inches Thick (Vineyards & Berry Farms); Sheet Composting 12 Inches Thick (Orchards); High Humus Organic Gardens; Raised Beds Filled with Compost, Leaf Mold, or Manure.

4 million worms/acre ~ 92 worms/square foot:  Undisturbed Temperate Deciduous Forests with Deep Leaf Litter; Intensively Grazed Alpine Pastures.

5 million worms/acre ~ 115 worms/square foot:  Temperate Rain Forests in Oregon & Washington.

6 million worms/acre ~ 138 worms/square foot:  Intensive Rotational Grazing Dairy Pastures; Manure Fertilized Fields (44 Tons per Acre Yearly).

7 million worms/acre ~ 161 worms/square foot:  Greenhouse Beds 3 Feet Deep Filled with Composted Manure.

8 million worms/acre ~ 184 worms/square foot:  New Zealand Sheep Pastures (Intensive Rotational Grazing).

Note:     Numbers are approximate.  Expect considerable variation between countries, climatic zones, elevation above sea level, and land management practices.  Earthworms do not thrive in acidic soils, poorly drained soils, rocky or sandy soils, or tight heavy clays.  The most important environmental factor for earthworm survival is ORGANIC MATTER.  Earthworm numbers increase or decrease dramatically depending on the amount of available food.  Highest populations occur on soils where plants grow year-round, and on soils covered with substantial depths of leaf litter or other plant materials.  To estimate worm populations use a tape measure and straight-edged garden spade, dig a 1 cubic foot soil sample, then carefully break apart the soil and tally earthworm numbers.  Multiple samples per acre yield more accurate estimates.

–>     1 million earthworms per acre is the Holy Grail for most farmers.  This goal is unreachable with conventional farming practices.  To increase worm populations on a field-scale basis requires a long-term soil conservation strategy including crop rotations, cover crops, living mulches, and reduced tillage.  Additional measures such as improved drainage (vertical mulching or tile lines), increased aeration (subsoil ripping or keyline plowing), and erosion control (terraces, contour planting and strip cropping) may also be required.  Overriding all is the logistics of food supply = providing sufficient tonnage of organic matter to feed an army of earthworms and other soil critters.  This is rarely accomplished unless the soil is covered with growing plants 365 days each year.

–>     A watershed management plan is recommended as more water = more vegetation = higher earthworm populations.  The goal is to capture and store every drop of rain that falls upon your land.  Passive or active irrigation may be needed to maintain worm populations at desired levels.

–>     Reaching the goal of 2 or 3 million earthworms per acre is nearly impossible without some form of “mixed agriculture” = crops and farm animals.  Animals provide manure needed to feed large numbers of worms.

–>     Cow manure applied at 1 pound per square foot ~ 22 tons = 44,000 pounds per acre yearly is sufficient to maintain populations of 1 million earthworms per acre (on fields where plants are grown year-round = 365 days annually).

–>     Earthworm populations soar when pastures are managed by intensive rotational grazing or mob grazing.  High concentrations of livestock (300 to 1,500 Animal Units per acre per day) deposit vast quantities of manure.  Fresh manure is excellent worm food.  (1 Animal Unit = 1 AU = 1,000 pounds of live animal weight, regardless of species).

–>     The ancient Roman practice of cattle penning relies on earthworms to help restore “tired”, “weak”, or “sick” fields.  Erect temporary fencing around land to be healed.  Broadcast seed or spread wildflower hay over soil.  Fill enclosure with livestock until land is “well crowded” = animals have just enough room to turn around ~ 8 x 8 feet = 64 square feet per cow ~ 680 cows per acre.  Feed livestock in pen until land is “well dunged and trodden” = 1/2 to 1 pound of manure per square foot ~ 10 to 20 tons of manure per acre = move livestock to new pen every day or every other day.  Cattle stomp seed into earth.  Earthworms and dung beetles till soil.  Manure and urine fertilize ground.  Pastures or fields are “enlivened” = revived by intensive dose of organic matter which causes soil critter populations to soar.  Soil organisms jump start biological nutrient recycling system which supports land revegetation.  Earthworms provide natural soil restoration without tractors, diesel fuel, or synthetic chemicals.

–>     Greek philosophers first noted the link between earthworms and improved crop growth.  This observation led to the development of worm farming practiced by cottagers and other small landholders who did not have cows or draft animals to produce manure for fertilizer.  In spring spread cut weeds and other green plant materials over garden.  Apply mulch thickly = 8 inches deep.  This was the original green manure.  In fall, rake tree leaves and spread over garden 8 inches deep.  Keep garden covered with weeds and leaves year-round.

The night before planting, take a lantern and collect earthworms from hay fields or pastures.  Put worms in a pail with damp moss or leaf mold to keep the “wrigglers” from drying out.  Set several worms with each seed or transplant.  cover immediately with soil and just enough mulch to lightly shade the soil.  When plants are established tuck mulch close around their stems.  Water garden as needed.  Do not spade, fork, plow, till, hoe, or cultivate soil — just plant, mulch, and harvest.  Continuous mulch feeds and protects earthworms and topsoil.  You can run entire farms on nothing but fresh cut weeds and native earthworms.  Space rows widely so there are sufficient weeds to mulch crops liberally.

–>     Over a typical 5 to 6 month growing season, 1 million earthworms per acre will excrete 150 to 180 TONS of worm casts.  These are deposited throughout the soil profile from the surface to approximately 6 feet deep.

Note:  This is a vast amount of nutrients ~ 6.88 to 8.26 pounds of earthworm castings per square foot!  Where does all the fertilizer go?  There are far more available nutrients than any crop could possibly absorb.  This is a mystery.  Nutrient recycling must be extremely rapid with most of the fertilizer elements held within soil critters and organic matter.

–>     Fertilizer Analysis of Surface Earthworm Casts Collected Nightly for 31 Days in July 2011 from 16 Organic Farms in Austria:

2.56% Nitrogen : 1.31% Phosphorous : 1.56% Potassium: 3.69% Calcium = 51.2 pounds Nitrogen + 26.2 pounds Phosphorous + 31.2 pounds Potassium + 73.8 pounds Calcium per ton of earthworm casts.  Average organic matter content of earthworm casts sampled = 7.1% by dry weight.  50 casts bulked for each sample.  16 farms x 31 days = 496 samples total.

–>     Average Nutrient Concentration in Earthworm Casts:

5x Nitrogen (500% more N than found in parent soil)

7x Phosphorous (700% more P than found in parent soil)

10x Potassium (1,000% more K than found in parent soil)

1.5x Calcium (150% more Ca than found in parent soil)

3x Magnesium (300% more Mg than found in parent soil)

Earthworms are living fertilizer factories.  They ingest their weight in soil and organic matter daily then excrete manure containing concentrated plant nutrients.  These nutrients are highly available = easily absorbed and will not “burn” plant roots.  Earthworm casts are rich sources of essential plant micro-nutrients.  These trace elements are often “tied up” = unavailable in parent soils but highly soluble in earthworm casts.  Plants fertilized with earthworm casts rarely require additional nutrients.  This is why earthworm casts have been the standard natural greenhouse fertilizer since the 17th century.

Would You Like To Know More?     Contact the Author directly if you have any questions or need additional information about managing agricultural earthworm populations.

Please visit:     http://www.worldagriculturesolutions.com  — or —  send your questions to:  Eric Koperek, Editor, World Agriculture Solutions, 413 Cedar Drive, Moon Township, Pennsylvania, 15108 United States of America  — or —  send an e-mail to:  Eric Koperek = worldagriculturesolutions@gmail.com

About The Author:     Mr. Koperek is a plant breeder who farms in Pennsylvania during summer and Florida over winter.  (Growing 2 generations yearly speeds development of new crop varieties).

 

 

 

 

 

 

 

ROTOTILLER PRIMER

What Is It?     Rototillers use revolving vertical blades to pulverize and mix soil (much like a kitchen blender).  Rototillers create a fine, smooth seedbed ideal for small-seeded crops.  Rototillers are also useful for one-pass field operations as no other tillage implement is needed to prepare ground for planting.

Do Not Confuse With:     A similar tillage implement called a “Roterra” or “Rotary Plow” uses horizontal blades designed NOT to mix soil layers.

Motive Power:     Most rototillers are self-propelled or attached to the PTO = power-take-off of a farm or garden tractor.  Horse drawn rototillers are also manufactured with rotary tines powered by gasoline engines.

Front Versus Rear Tines:     Many garden rototillers are built with tines mounted in front of the wheels.  Front-tine models are NOT recommended as they are difficult to control and operate inefficiently.  Only purchase rear-tine rototillers for farms or large gardens.

Forward Rotating Versus Contra-Rotating Tines:     Rear tined rototillers may be purchased with either forward rotating or backward rotating = contra-rotating tines.  Forward rotating tines turn in the same direction as the tractor wheels.  Contra-rotating tines turn backwards while the tractor wheels turn forwards.  Forward rotating tines are best for green manuring = chopping plants into small pieces and mixing them with the soil.  Contra-rotating tines are best for sod busting = tilling soils that are hard or have never been broken (plowed).  Most farmers and gardeners buy rototillers with front rotating tines because these machines are more versatile and till faster than contra-rotating models.

Tillage Width:     Most garden rototillers till strips 16 to 22 inches wide.  Garden tractor rototillers till 4 foot wide strips.  Rototillers sized for farm tractors till strips 8 feet wide.

Tillage Depth:     Most rototillers reach 8 inches deep.  Front tined rototillers have poor depth control and are not recommended for shallow tillage or cultivation.  Most rear tined rototillers have good depth control and can be set to till in 1-inch increments.

Hard Ground:     Rototillers are not sod-busters; they are ill-suited for tillage in hard, rocky, or stony fields.  Average wear and replacement of rototiller tines is much higher than for chisel plows, disc harrows or other tillage implements.  It is better to use a moldboard plow to break hard ground then “harrow” with a rototiller.  Alternatively, use a rototiller with contra-rotating tines to bust hard soils into soft seed beds.

Wet Ground:     Rototillers should NEVER be used on wet or moist fields.  Ideal soils are slightly dry or barely damp.  Correct soil moisture is critically important for good tillage results.  Rototillers will churn overly moist soils into a paste-like texture that will harden like concrete.  One pass with a rototiller is sufficient to create a dense, impervious plow pan that will greatly restrict root growth and crop yields.  Improper rototilling can ruin a good field so always wait until soil is well-drained = nearly dry.

Mow First:     Rototiller tines are easily clogged by surface litter, especially tough grass or weed stems.  Always mow fields before rototilling or use a forage chopper to shred standing vegetation.  Flail mowers, rotary mowers, and common lawn mowers do the best job of chopping plants into small pieces.

Cover Crops:     Rototillers are ideal tools for incorporating large amounts of organic matter into the soil.  Mow cover crop first then drive slowly so tines can thoroughly chop and mix crop residues into the earth.  Grow multiple cover crops in sequence to eradicate problem weeds or improve soil fertility and structure.  Buckwheat (Fagopyrum esculentum) is an excellent cover crop for farm and garden:  It overwhelms weeds, has an extensive system of fine roots that improve soil tilth, and has soft stems and tender leaves that are easy to rototill into the ground.

Tillage Speed:     Always till slowly so tines have sufficient time to chop and blend soil uniformly.  Low tractor speeds produce the best results.

Deep Tillage:     In heavy clay soils it is better to make multiple passes rather than trying to till 8 inches deep all at once.  Set rototiller 2 inches deeper for every pass.

Carrot Farming:     Rototillers are ideal for preparing planting beds for carrots and other crops that need fine, loose soil.  Apply soil amendments sequentially (peat first, sand second, fertilizer last) then rototill after each application.  Set rototiller 2 inches deeper for each succeeding pass.  4 passes are sufficient for most soils.

Mixing Potting Soil:     Large quantities of potting soil are easily prepared with a rototiller.  Spread ingredients on bare ground then mix by making multiple passes with rototiller set to skim soil surface (1 inch deep).  1 part topsoil + 1 part peat + 1 part sand = 3 parts by volume is a good, general purpose potting mix suitable for most farm, garden and greenhouse crops.

One-Pass Farming:     Broadcast lime, fertilizer, seed, and herbicide (if desired) over weeds or other cover crop.  Mow closely then rototill only 2 inches deep leaving soil surface rough and trashy.  Irrigate to firm seedbed or wait for rain.  Some seeds will be buried too deep, others too shallow, but enough will germinate to make a crop.

Winter Grains:     The one-pass technique is ideal for growing winter wheat, barley, oats, or rye.  Broadcast Dutch White Clover (Trifolium repens), Red Clover (Trifolium pratense), or Crimson Clover (Trifolium incarnatum) along with winter grain seed.  Clover will suppress weeds without need for chemical herbicides.  Note:  If soil is too wet, plant without tillage.  Seed will work its way into the ground and surface mulch will protect germinating seedlings.  Many sprouts will die but enough will survive to reach target yields.  (Good Farming Practice:  When planting into standing vegetation on un-plowed ground, sow pelleted seed to increase germination and seedling survival).

Truck Farms:     A rototiller is the only tillage implement needed for truck farms and market gardens.  Farms up to 25 acres can be managed using only a rototiller and mower.

ROTOTILLAGE TIPS:

>>>     Till only as deep as necessary to get seed or transplants into the ground.  Excessively deep tillage wastes time, energy, and harms soil structure.  Shallow tillage is the best way to prevent formation of plow pans = compacted soil layers.

>>>     Never rototill vegetation higher than the tines = 8 inches tall.  For best results, always mow or chop plants before rototilling.

>>>     Never rototill wet soil!  Be patient and let ground drain.  Till only when earth is barely damp = almost dry.  Rototilling wet fields destroys soil structure.

>>>     A rototiller is like a kitchen blender — it is best used when soil needs to be uniformly mixed.  It takes time to pulverize earth into a fine, soft seedbed.  Drive SLOWLY or the field will have to be re-tilled.

>>>     It is often unnecessary to till an entire field.  Rototill only where seeds or transplants will be set.  Leave the remainder of the ground covered by weeds, clover, or other nurse crops.  This technique is ideal for widely spaced vine crops like tomatoes, pumpkins, melons, squash, sweet potatoes, gourds, and cucumbers.

>>>     Improperly used rototillers kill large numbers of earthworms.  To conserve earthworm populations till only when essential (avoid tillage whenever possible), till shallowly, and till in the afternoon when ground is warmest and earthworms have moved down to cooler soil depths.  Remember:  More earthworms are always better than more tillage.

>>>     Rototilled soil is finely pulverized which makes it very susceptible to erosion.  Use good conservation practices to prevent soil loss on slopes or in areas with high winds or severe rainstorms.  Plant windbreaks, till only on the contour, leave wide sod strips between tilled areas, and top seed low growing clovers over cash crops to protect the soil surface.

>>>     Use rototillers with forward rotating tines for green manuring, soil preparation, and cultivation.  Use rototillers with contra-rotating times to “plow” hard or heavy soils for planting  Note:  Even the most rugged rototillers are not designed for heavy-duty tillage.  On problem soils it is best to use a moldboard or stone plow to break the land first then harrow with a rototiller.  This prevents unnecessary wear and replacement of rototiller tines.

Would You Like To Know More?     Please contact the Author directly if you have any questions or need more information about tillage implements and practices.

ERIC KOPEREK = worldagriculturesolutions@gmail.com

About The Author:  Mr. Koperek is a plant breeder who farms in Pennsylvania during the summer and Florida during the winter.  (Growing 2 generations per year greatly speeds development of new crop varieties).