BIBLICAL AGRONOMY

What Is It?     “Biblical Agronomy” is a philosophy of agriculture, a system of farming based on the Christian bible and practices of the early Catholic Church.  Over time these precepts have evolved into a new way of thinking, a unique form of Biological Agriculture.

How To Do It:     Following are Bible passages with agricultural commentaries to help farmers apply biblical principles in a modern world:

“Thou shalt not kill”.  Exodus 20 : 1 – 17.   Editor’s Note:  This injunction from the “Ten Commandments” is the first principle of Biblical Agronomy and the hardest concept for most farmers to practice.  Modern industrial agriculture is largely negative.  It proceeds from the assumption that nature must be subdued.  Soils must be plowed.  Weeds must be eradicated.  Insects must be exterminated.  Farmers spend much of their time spraying deadly chemicals:  Herbicides, insecticides, fungicides — a laundry list of toxins.  Conventional agriculture is all about killing things.  Biblical agronomy takes the opposite approach:  Agriculture is about life, not death.  Farmers concentrate on genesis = creating life.  Biology replaces chemicals.  Earthworms replace plows.  Plants replace petroleum.  “Let nature do the heavy lifting”.  The principle distinction between Biblical Agronomy and conventional agriculture is that when problems arise farmers ask:  “How do I solve this without killing anything?”

“If you enter your neighbor’s grain field, you may pick kernels with your hands, but you must not put a sickle to  his standing grain”.  Deuteronomy 23 : 25.  Editor’s Note:  The poor have the right to eat from your fields but not the right to harvest for profit.  Over the centuries this rule has evolved into the practice of leaving some part of a field unharvested so beneficial insects and wildlife have something to eat.  Modern custom is to reserve 5% to 10% of crops for “Nature’s Pantry”.  The alternative is buying costly insecticides.

“If you enter your neighbor’s vineyard, you may eat all the grapes you want, but do not put any in your basket”.  Deuteronomy 23 : 24.  Editor’s Note:  Eat your fill but do not carry any away.  Hospitality to all in need was official Church doctrine during the Middle Ages.  The right of the hungry to eat from the fields was part of the social safety net for the poor.  This practice was later codified in various “laws of hospitality”.  Modern farmers plant hedgerows and “insectary crops” to feed beneficial wildlife.  Biologically managed vineyards are sown with legumes and wildflowers.  Flowers replace insecticides.

“Do not plant two kinds of seed in your vineyard; if you do, not only the crops you plant but also the fruit of the vineyard will be defiled”.  Deuteronomy 22 : 9.  Editor’s Note:  Modern agronomists interpret this rule as a general injunction against mixing varieties of the same open pollinated species.  Isolation distances must be preserved to prevent cross-pollination so varieties remain pure.  (This rule does not apply to self-pollinated species because out-crossing rarely occurs).

“Isaac planted crops in that land and the same year reaped a hundredfold, because the Lord blessed him.”  Genesis 26 : 12.  Editor’s Note:  Historical seed to harvest ratios of 1 : 100 are not inconceivable.  Roman farmers routinely harvested 40 bushels of wheat per acre.  80-bushel yields were common when irrigated grain followed nitrogen-fixing cover crops of lentils, lupines, clover, or vetch.  Modern wheat varieties regularly produce 100-bushel yields.  The keys to bumper grain crops are no tillage, live soils, wide spacing of individual plants, living mulches to control weeds, companion plants to increase biodiversity, and irrigation to prevent water competition between grain and cover crops.  Farmers in the Middle Ages planted the “Holy Trinity” = 1 grain + 1 legume + 1 root crop.  For example:  Wheat, clover, and turnips.  Seeded at 50 pounds of wheat per acre, this polycrop easily yields 3,000 pounds (50 bushels) per acre = 1 : 60 seed to harvest ratio.

“But the seed falling on good soil refers to someone who hears the word and understands it.  This is the one who produces a crop, yielding a hundred, sixty, or thirty times what was sown.”  Matthew 13 : 33.  Editor’s Note:  Plant most any heritage variety of winter wheat in your garden, for example, Red Fife.  Space plants 1 foot apart equidistantly.  Mulch the ground and water as needed.  Each plant will yield 1 1/2 to 2 1/2 ounces of grain on average = approximately 1,305 to 2,175 seeds per plant = 68 to 113 bushels per acre.  You do not need “improved” or “hybrid” varieties to obtain high yields.  Good growing conditions are the most important factors.

“When you are harvesting in your field and you overlook a sheaf, do not go back to get it.  Leave it for the foreigner, the fatherless and the widow, so that the Lord your God may bless you in all the work of your hands”.  Deuteronomy 24 : 19.  Editor’s Note:  Modern farmers plant wildlife food plots or leave border rows unharvested.  Biological agriculture practice requires that farms be managed as ecosystems rather than individual fields.  The idea is to encourage large populations of many beneficial species.  More biodiversity = healthy ecology = better plant growth = higher yields.

“Do not go over your vineyard a second time or pick up the grapes that have fallen.  Leave them for the poor and the foreigner”.  Leviticus 19 : 10.  Editor’s Note:  Today, “good farming practice” means leaving as much plant residue as possible to prevent erosion and feed soil critters.  Grain fields are harvested with “header reels” to leave standing straw to slow wind and trap snow.  Farmers plant mixed species cover crops to feed earthworms over winter.  Fallen fruits are grazed, composted, or burned to break insect and disease cycles.  Vineyards and orchards are sown with weeds, legumes, wildflowers, and insectary crops to support large populations of beneficial insects.  More flowers = fewer pests.

“When you reap the harvest of your land, do not reap to the very edges of your field or gather the gleanings of your harvest”.  Leviticus 19 : 9.  Editor’s Note:  The right of the poor to glean fields is common to many cultures.  Modern farmers leave border rows unharvested.  Head rows are planted with “bee pasture”.  Strips of weeds, wildflowers, and insectary crops are sown within fields to feed beneficial insects.  Wildlife food plots and “insect refuges” are seeded in odd corners of land.  The idea is to encourage maximum populations of useful species.

Social Commentary:  In this modern world farmers comprise less than 2% of the United States population.  Most farms are located far from cities.  Fields are harvested by machines.  Thus, there are few rural poor and hardly any crops to glean.  This is in stark contrast to biblical times when 98% of the people were farmers, many of them hungry.  Today, feeding the urban poor is not easy.  Rural labor shortages mean there are few hands to pick fruits and vegetables.  Surplus crops often rot in the fields while Food Banks go empty.  The Bible is easy to read but difficult to practice.

“You shall not breed together two kinds of your cattle; you shall not sow your field with two kinds of seed, nor wear a garment upon you of two kinds of material mixed together”.  Leviticus 19 : 19.  Editor’s Note:  Ancient Jews had a passion for keeping everything separate.  This extended to cooking (do not mix meat and milk) and marriage (do not marry “gentiles” = non-Jews).  Modern agronomy has turned the old rules upside down.  Farmers now plant hybrid seeds and graze hybrid cattle on multiple species forage crops.  Science and practical experience have taught us that mixtures grow better than individual species grown separately.  Polycrops are the new “best practice”.  Grains and legumes are sown together.  Fields are planted with strips of unrelated crops.  The goal is maximum biodiversity.  Biology, not chemistry, keeps soils fertile and pests under control.

“But during the seventh year the land shall have a sabbath rest, a sabbath to the Lord; you shall not sow your field nor prune your vineyard”.  Leviticus 25 : 4.  Editor’s Note:  Long rotations break insect and disease cycles.  For example:  Farmers in Argentina rotate 7 years of field crops with 7 years of pasture.  (Alternating pasture and row crops is called “ley farming”).  7-year rotations are ideal for restoring soil structure and fertility.  Rule-of-Thumb:  Never plant the same crop on a field more than once every 7 years.  Reserving 1/7th = 14% of cropland for annual fallow is a great way to support large populations of wildlife and beneficial insects.

“A king who cultivates the field is an advantage to the land”.  Ecclesiastes 5 : 9.  Political Commentary:  Humility precedes learning.  There is much advantage in keeping leaders humble.  From a practical standpoint, a king busy growing his crops has little time for mischief.  Most people care not who runs the government as long as it leaves them alone.  “God bless us with a king who rules and does nothing”.  (Farmers around the world have inherent distrust of government.  This reticence comes from long experience:  When officials arrive, bad things happen).  Farmers who practice Biblical Agronomy tend to be independent spirits.  Many live off-grid.  The majority are socially conservative.  Most have root cellars or can their own vegetables.  Large numbers store a 2-year food supply.  “Biblical” farmers are much like the Amish:  They are part of our modern culture yet live apart from it.

“But on the seventh year you shall let it rest and lie fallow, so that the needy of your people may eat; and whatever they leave the beast of the field may eat.  You are to do the same with your vineyard and olive grove”.  Exodus 23 : 11.  Editor’s Note:  Planting monocrops year after year depletes soil fertility and promotes outbreaks of pests and diseases.  Farmers practicing Biblical Agronomy avoid these problems by keeping 7-year rotations and planting polycrops.  For example:  “The Twelve Apostles” is a multi-species forage mix including 4 grains + 4 legumes + 4 root or forb crops.  Mixed species produce more nutritious forage and higher yields.  “Tithing” 1/7th = 14% of cropland for annual fallow (weeds or mixed species cover crops) promotes large numbers of beneficial insects.  The good bugs eat the bad bugs.

The Nine Agricultural Commandments:  Following is a list of biological principles for Biblical Agronomy.  Use these guidelines to make farm management decisions.

“I shall become enlightened for the sake of all living things”.

I.  Do Not Kill.  Find another way.  Use the least intrusive methods.  “Walk lightly upon the land”.

“Farmers are keepers of the earth”.

II.  Keep the Agricultural Sabbath.  Follow 7-year rotations.  Long rotations control most insects and diseases without need for human intervention.  Crop rotations improve soil tilth and fertility.

III.  Tithe for Nature.  Provide hospitality to all in need.  Leave border rows unharvested.  Plant wildlife food plots.  Reserve 5% to 10% of farmland for hedgerows, windbreaks, and wood lots.  Wildlife are an essential part of the agricultural ecosystem.

“God loves all his creatures, even bugs”.

IV.  Feed the Insects.  Reserve 5% to 10% of cropland for native weeds, insect refuges, bee pasture, and insectary crops.  Conventional monocrop farms are “green deserts” without nectar or pollen for beneficial insects.  Feed the good bugs and they will protect your crops.

V.  Sow Polycultures Whenever Practical.  Plant the “Holy Trinity” and “The Twelve Apostles”.  Mixed species are the key to soil fertility and high yields.

VI.  Do Not Plow.  Practice zero-tillage whenever possible.  Symbiotic fungi are essential to plant health and nutrition.  Beneficial fungal networks must be protected at all times or soil ecology will collapse.

VII.  Keep Soil Covered at All Times.  Soil is a living organism that requires air, water, food, and shelter.  Keep it warm during winter and cool over summer.  Do not let topsoil dry out.  Prevent crusting and compaction so soil can breathe and rain can enter.  Protect fields with mulch or live plants 365 days yearly.  “Keep fields green”.

“Good farmers grow fungi.  The fungi grow the crops”.

VIII.  Feed the Fungi.  Plants feed sugar to fungi.  Fungi provide water and minerals to plants.  Trading requires live roots or fungi die or go dormant.  Plant productivity is directly related to the number and extent of fungal networks.  More fungi = higher yields.  Good farmers keep their fields covered with growing plants year-round.

“Roots in the ground all year round”.

IX.  Encourage Maximum Biodiversity.  Genesis is the heart of Biblical Agronomy.  Agriculture is all about creating life.  Ecosystem productivity and stability are directly related to number of species.  More species = healthy ecology = higher yields.  Good farmers plant many varieties to provide food and shelter for all God’s creatures.

“The Lord gave the word and great was the company of the creatures”.

Wrapping It Up:     Biblical Agronomy is not so much a rigid set of rules but rather a way of thinking about biology.  Adapt basic principles to fit local conditions.  The key is to be practical rather than zealous.  God will not smite you if you spray the locusts.

Agronomy Notes:

Bee Pasture = Plants selected for long flowering seasons and large amounts of nectar and pollen.  Wild bees and other native insects provide most of the pollination for agricultural crops.  Good farmers sow 5% to 10% of farmland with bee forage.  (If you cannot afford seed plant native weeds).

Border Rows = Crops growing along field edges.  Farmers often leave 2 to 4 rows unharvested to feed wild animals.  Border row dimensions are determined by the width of planting and harvesting machinery.

Head Rows = Empty space at field ends used for turning tractors and farm equipment.  On conventional farms head rows are covered with sod or left bare.  On biologically managed fields head rows are planted with clover, wildflowers, native weeds, or other “bee forage”.  The idea is to provide food and shelter to encourage large numbers of beneficial insects.

Hedgerows = Narrow lines of small trees or shrubs planted to contain animals, slow wind, trap snow, moderate micro-climate, and provide food and shelter for beneficial wildlife.  Ideal hedgerows are composed entirely of economic species that can be harvested for nuts, berries, fruits or other cash crops.  Plant 40 or more species per linear mile for high biodiversity.  Hedgerows support large populations of insect eating birds.

Insectary Crops = Plants with many small flowers ideal for feeding beneficial insects.  For example:  Anise, buckwheat, caraway, clover, coriander, dill, and fennel.  These can be combine harvested and the seed sold for profit.

Insect Refuges = Standing crops left unharvested so insects have undisturbed habitat for feeding and breeding.  For example:  If you mow a hay field all at once the insects have nowhere to go and nothing to eat.  The solution is to leave a strip of meadow unharvested so insect populations are preserved.  (If land is scarce sow native weeds in odd corners or other spaces unsuitable for farm machinery).

Ley Farming = Rotating pasture and field crops to control weeds and fertilize soil.  Combining animals in farm rotations boosts crop yields.  Manure stimulates plant growth more than equal weights of fresh or composted grass.  (Strange things happen in a cow’s stomach.  Grass goes in and super-charged fertilizer comes out.  How this happens is scientific mystery).

Living Mulches = Short plants sown to cover the soil and prevent weed growth.  Cash crops are seeded or transplanted into the living mulch using no-till equipment.  For example:  Peppers can be transplanted into an established sward of Dutch White Clover (Trifolium repens).  The clover smothers weeds and feeds nitrogen to the cash crop.

Mulch-In-Place = Sow a fast-growing cover crop that produces large amounts of biomass (stems and leaves).  Kill the mature cover crop with a roller-crimper or sickle-bar mower.  Seed or transplant through the mulch using no-till equipment.  Mulch-In-Place provides 90% to 95% weed control, as good or better than glyphosate (Roundup) or other conventional herbicides.

Multiple Species Cover Crops = Mixtures of plants grown to control weeds, feed livestock, and fertilize fields.  For best results sow many species to enhance biological synergy.  Mixed plants feed soil bacteria and support vast networks of beneficial fungi.  The fungi provide water and nutrients to the plants.  Basic cover crop mixes include:  2 cool season grasses + 2 cool season legumes + 2 cool season broad leaf plants + 2 warm season grasses + 2 warm season legumes + 2 warm season broad leaf plants + 2 or more root crops = 14 or more species.  Use no-till equipment to drill 20 pounds of seed per acre in 2-inch deep furrows spaced 7.5 inches apart.

Polyculture = Growing 2 or more species together.  Polycrops greatly reduce insect pests and produce large amounts of sugar to feed soil bacteria and fungi.  Most soil humus is made by bacteria that eat sugar exuded by plant roots.  Agricultural productivity is directly related to the number of polyculture species.  More species = more leaves and stems = more photosynthesis = more sugar exuded by roots = larger populations of soil microbes = faster nutrient cycling = higher yields.  Some farmers plant cover crops with 60 species!  “There is strength in numbers”.

Strip Cropping = Polyculture system adapted to farm machinery.  Divide farms or fields into narrow strips following land contours.  Plant adjacent strips with unrelated crops to maximize edge effects and increase biodiversity.  Adjust strip widths to match planting and harvesting equipment.  For best results strips should not be wider than 200 feet on flat land or 50 feet on hillsides.  Planting a variety of crops spreads economic and biological risk.  Strip cropping supports large populations of beneficial insects that keep pests under control.

Weed Farming = Manage weeds just like any other cover crop.  (A)  Fertilize and irrigate weeds to promote maximum growth, then flatten with a roller-crimper or sickle-bar mower.  Immediately seed or transplant through the weed mulch using no-till equipment.  (B)  Overseed native weeds with clover or other legumes to make a cheap multi-species cover crop.  (C)  Harvest weeds like silage using a forage chopper.  Use chopped weeds to mulch cash crops.  (D)  For biological pest control, plant weeds next to crops needing protection.  Alternatively, mow strips through tall weeds then plant cash crops down the rows.  Crops grown in weeds rarely have pest problems.  (E)  Native weeds support enormous populations of beneficial insects.  Good farmers reserve 5% to 10% of cropland for weeds.  For best results grow weeds in narrow strips within fields and around field borders.  (F)  Sow weeds to heal bare or worn-out soils.  Wildflower hay can be baled and spread for this purpose or haul weed seeds from the nearest grain elevator.  (G)  Grind weed seeds in a roller mill to make free fertilizer.  Use weed seed meal just like cotton seed meal or other organic plant food.  (H)  When insects threaten to overwhelm, soak chopped weeds in water, strain, then spray “weed tea” on plants.  Weed juice chases away most bugs.

Wildlife Food Plots = Small fields planted with grains, legumes, forbs, and root crops to feed deer, pheasants, turkeys, rabbits, and other game animals.  Wildlife plots are typically seeded on poor, wet or rocky land unsuitable for hay or cash crops.

Windbreaks = Rows of trees, shrubs, perennial Pampas grass, or other vegetation planted to slow wind, stop erosion, trap snow, and moderate micro-climate.  For best results plant windbreaks no closer than 50 feet nor farther than 150 feet apart.  Effective wind protection extends downwind 10 times average tree height.  Plant 40 species per linear mile for high biodiversity.  Windbreaks increase average yields 15% by reducing water loss from crop leaves.  (Common synonyms include:  Greenbelts, Hedgerows, and Shelterbelts).

Wood Lots = Small areas of forest grown to provide firewood.  For highest yield manage trees by coppicing:  Cut down 7-year old trees then harvest on 7-year cycles when stump or root sprouts reach 2 to 3 inches diameter.  Divide forest into 7 sections then harvest each part sequentially.  Coppiced trees live hundreds of years because the are constantly renewed.

Related Publications:     The Twelve Apostles; Biological Agriculture in Temperate Climates; Polyculture Primer; Strip Cropping Primer; Worm Farming; Managing Weeds as Cover Crops; Earthworm Primer; Planting Maize with Living Mulches; Living Mulches for Weed Control; Crops Among the Weeds; The Edge Effect; Organic Herbicides; Forage Maize for Soil Improvement; Coppicing Primer; Forage Radish Primer; Weed Seed Meal Fertilizer; Intensive Rice Culture Primer; Trash Farming; Pelleted Seed Primer; Upside Down Potatoes; Maize Polyculture Trial 2007 – 2016; No-Till Hungarian Stock Squash; and the Rototiller Primer.

Would You Like To Know More?     For more information on biological agriculture and practical polyculture please visit:  http://www.worldagriculturesolutions.com  — or —  send your questions to:  Eric Koperek, Editor, World Agriculture Solutions, 413 Cedar Drive, Moon Township, Pennsylvania, 15108 USA.

About The Author:     Mr. Koperek is a plant breeder who farms in Pennsylvania during summer and Florida over winter.  (Growing 2 generations yearly speeds development of new crop varieties).

Advertisements

THE TWELVE APOSTLES

What Is It?     “A multi-species cover crop containing 12 varieties often 4 grains, 4 legumes, and 4 root crops”.

12 Apostle mixes are frequently planted by farmers practicing “Biblical Agronomy”.

For example:  Oat, pea, turnip, rye, winter vetch, mangel-wurzel (stock beet), wheat, clover, forage radish, barley, frost bean (fava bean), and rutabaga.

Other possible species include:  Millet, sorghum, buckwheat, maize, teff, sunflower, lentil, lupine, runner bean, sunn hemp, soy bean, flax, rapeseed, safflower, kale, and many other varieties.  Choose what grows well on your farm.

“Melange:  A mixture of grains, legumes, and root crops grown to feed animals and improve soils”.

All melanges contain at least 3 components:  1 grain + 1 legume + 1 root crop = “Holy Trinity”.

“We sowed the Holy Trinity.  Father Michael blessed the crop and our cattle thrived”.

For example:  Thomas Jefferson sowed buckwheat, winter vetch, and turnips to cure “tired soils”.

There is nothing magical about the number 12.  Melanges often contained fewer species.  Farmers blended odds and ends from their granaries or whatever they could buy cheaply.

Growing several species together (polyculture) is not a new idea.  The practice dates to Roman times.  Middle Age farmers called mixed plants “melanges”.  Today, modern agronomists call them “multi-species cover crops”.

Call it what you will, but “bio-diversity” (many species) is a key principle of Biological Agriculture.  Life breeds life.  Each additional species creates more food and shelter for myriad lifeforms.  Grow multi-species cover crops and soon your soil will teem with billions of critters.  More critters = faster nutrient cycling = higher yields.

“Feed the critters and the critters will feed your crops”.

I have not purchased fertilizer (chemical or organic) in 19 years.  Truly, there is power in numbers.  More species means more money in my pocket.

Try this on your farm:  Keep your ground covered with growing plants year-round.  Never plant a crop by itself.  Always plant mixed species.  Copy nature in your fields.  You will be glad you did.

“Roots in the ground all year round”.

Agronomy Notes:

If you do not have experience with polycultures, try something simple.  Winter grains and Dutch White Clover (Trifolium repens) can be planted together at the same time.  (Broadcast clover at 12 pounds per acre).  Clover suppresses weeds and provides nitrogen to the cereal crop.  When the grain is harvested clover covers the field.  The following season mow first then seed or transplant into clover living mulch using no-till equipment.

Different sized seeds can be mixed in the same seed box and drilled into a common furrow.  Big seeds like maize, sunflower and peas break through the soil so little seeds like clover and turnips germinate easily.  Furrows spaced 7.5 inches apart are ideal for most multi-species cover crops.

If desired, seeds can be mixed with cornmeal or sawdust to provide more volume for even distribution.

Small seeds like wheat, vetch and sugar beet can be surface seeded.  For best results use pelleted seed.  Broadcast into standing vegetation then immediately flatten plants with a roller-crimper or cut with a sickle-bar mower.  Surface mulch covers and protects germinating seedlings.

Large seeds like maize, sunflower and beans are best planted underground with no-till equipment.  Surface sow large seeds only with monsoon rains or daily irrigation.

When sowing grains mix several varieties with the same maturity date.  For example:  3 varieties of wheat or 4 varieties of barley.  Planting multiple varieties often increases yields 5% to 7%.  You can also sow different species together:  Mixtures of rye and wheat are called maslin; blends of barley and oats are called dredge.  Mixed grains have better resistance to insects and diseases.

Plant mixtures grow better than individual species.  Sow barley, pinto beans, and tillage radish in separate plots.  Plant a fourth plot with all 3 species.  Come the drought and monocrops shrivel and die, but the polycrop remains green.  Mixed species help each other.  They also support vast networks of beneficial fungi.  The fungi provide water and nutrients to the plants.

“Good farmers grow fungi.  The fungi grow the crops”.

Mixed plants capture more sunlight and produce more biomass.  Rule-of-Thumb:  A polycrop of 1 grain + 1 legume + 1 root crop produces 2 times more vegetation by weight than the same species grown separately.

Polycultures increase grain yields substantially.  For example:  Oats grown alone yielded 43 bushels per acre.  Oats grown with peas and turnips yielded 62 bushels per acre.

Rule-of-Thumb:  You need at least 8 species to get significant benefits from polycultures.  For example:  Oats, peas and turnips yielded 62 bushels per acre.  Oats grown with peas, pinto beans, Dutch white clover, Japanese long turnips, tillage radish, stock beet, and rutabaga yielded 76 bushels per acre.  More species = more biological synergy = higher yields.  For example, mixtures of 12 to 16 species out-yield blends of 8 or fewer species.  Communities of 30 species yield more forage than pastures with only 20 varieties.

Pair tall growing cash crops with short height legumes.  For example:  Sow tall heritage varieties of wheat with Dutch white clover.  Dutch clover grows only 6 inches high so it competes minimally for sunlight with companion crops.  (Planting clover with dwarf or semi-dwarf cereals reduces yields 30% to 50%.  Clover shades grass stems which reduces photosynthesis.  Less sunlight = lower yields).

Sow non-climbing beans with maize for efficient combine harvest.  Vines without tendrils are the best companion plants.  For example:  Maize planted with climbing velvet bean (Mucuna pruriens) yielded 128 bushels per acre.  Maize seeded with non-climbing pinto beans yielded 208 bushels per acre.  Similarly, oats planted with climbing peas yielded 19% less than oats seeded with dwarf peas.

Earthworm (Lumbricus terrestris) growth is determined mostly by the amount and quality of available food.  Plant monocrops and worms take 3 years to reach sexual maturity.  Sow polycrops and earthworms take only 2 years to reproduce.

Earthworms thrive on balanced diets of mixed plants.  1 acre of orchard grass (Dactylis glomerata) supported a population of 361,000 earthworms.  1 acre of 50% orchard grass + 50% Dutch white clover produced 647,000 worms per acre.  Earthworm numbers soared to 2,150,000 per acre planted with a 16 species mix of grasses, legumes, forbs, and root crops.

1,350,000 earthworms per acre feeding on a 20-variety cover crop mix produce 2,700 pounds of surface castings each day of the growing season = about 1 ounce of manure per square foot = 68 pounds of available nitrogen, 35 pounds of phosphorous, and 41 pounds of potassium per acre daily.  That is more than enough fertilizer for maize, sugar cane, potatoes, or any crop a farmer wants to grow.

“Feed the worms and they will tend your crops”.

Cereals grown with companion plants are less susceptible to lodging = falling down.  Over a 61-year period, oats grown by themselves lodged 38 times.  Oats sown with dwarf peas and turnips lodged only 11 times.  In all 11 cases full crops were harvested by cutting and swathing oats into windrows.  Peas and turnips held oat stems above ground so the grain did not spoil in the mud.  (Grain on the ground cannot be harvested due to risk of contamination by pathogenic mold and bacteria).

Weedy fields can be improved by surface planting with clover or other small-seeded legumes.  Large seeded legumes like peas and beans should be drilled with no-till equipment.  The combination of native weeds and nitrogen-fixing legumes makes a cheap mixed species cover crop that will support large populations of earthworms and beneficial insects.  For biological pest control reserve 5% to 10% of cropland for native weeds.

German farmers have a long history of planting Landsberger Gemenge” = Hill Mixture = Mountain Mixture = Waste Land Mixture = multi-species forage crop sown on land unsuitable for plowing.  Typical mixes include 1 cereal or grass + 2 legumes + 1 cabbage family plant or root crop.  For example:  Winter rye + red clover + winter vetch+ forage kale or turnip.  The combination of cereal, pulse, forb, and root crops makes an ideal balanced diet for grazing animals.  Cattle gain 2.5 to 3.5 pounds daily when feeding on forage mixtures of 4 to 5 species.

Plant mixtures extend growing seasons by increasing soil and air temperatures.  Seed tall, medium and short varieties to hold warm air near soil surface.  Multiple species can raise air temperatures 10 degrees Fahrenheit and expand growing seasons by 30 to 60 days.

Related Publications:     Biblical Agronomy; Biological Agriculture in Temperate Climates; Polyculture Primer; Strip Cropping Primer; Worm Farming; Managing Weeds as Cover Crops; Earthworm Primer; Planting Maize with Living Mulches; Living Mulches for Weed Control; Crops Among the Weeds; and The Edge Effect.

Would You Like To Know More?     For more information on biological agriculture and practical polyculture please visit:  http://www.worldagriculturesolutions.com  — or —  send your questions to:  Eric Koperek, Editor, World Agriculture Solutions, 413 Cedar Drive, Moon Township, Pennsylvania, 15108 USA.

About The Author:     Mr. Koperek is a plant breeder who farms in Pennsylvania during summer and Florida over winter.  (Growing 2 generations yearly speeds development of new crop varieties).

BIOLOGICAL AGRICULTURE IN TEMPERATE CLIMATES

A Seminar at Cornell University, Monday 19 November 2018. Sponsor: Norman Uphoff, Professor Emeritus, International Programs SRI Project, College of Agriculture and Life Sciences. Guest Speaker: Eric Koperek = erickoperek@gmail.com. Website: http://www.worldagriculturesolutions.com

My ancestors were literally dirt poor = without soil. They farmed abandoned quarry land. Over the course of 8 centuries they created 10 to 15 feet of topsoil = 1/5 to 1/4 inch yearly. This is how they did it:

BIOLOGICAL AGRICULTURE PRINCIPLES

Copy Nature: “Gardeners are the best farmers”. Observe nature closely then mimic what you see. How do you grow your garden? What do you see in the forest? Copy this in your fields. The idea is to combine biological processes with labor efficient agricultural machinery.

Keep Fields Green: Fields should be covered with growing plants 365 days yearly. Do not waste sunlight. The goal is to produce the maximum possible amount of organic matter per square foot each year. More plants = more organic matter = increased populations of soil “critters” = faster nutrient cycling = higher crop yields. “Roots in the ground all year round”.

No Soil Disturbance: Avoid plowing, disking, harrowing, and cultivation whenever practical. Transplant crops or surface sow using pelleted seed and no-till equipment. Tillage kills earthworms and destroys fungal networks = lower crop yields. “Good farmers grow fungi. The fungi grow the crops”.

Keep Soil Covered: Use living mulches, dead mulches, or growing crops to keep fields covered year-round. Control weeds with Mulch-In-Place. Never leave soil bare not even for a single day. Harvest and replant fields the same day or try relay planting: Sow the following crop several weeks before the first crop is harvested.

Worm Farming:  Use earthworms (Lumbricus terrestris) to till and fertilize fields. Earthworms are the key to biological soil management. Worms eat their weight in soil and organic matter daily. One million earthworms per acre = 1 ton of worm manure daily. More worms = more nutrients = higher crop yields. “Feed the worms and the worms will tend your crops”.

Increase Biological Diversity: Grow many crops rather than one crop. Plant polycultures whenever practical. Multiple crops diminish risk of crop failure. “Life breeds life”. More crops = more biological activity = higher yields.

Watershed Management: Agriculture is all about water management. Mind the water and everything else will fall in place. The goal is zero runoff = trap every drop of rain and flake of snow that falls on the land. Store water for dry seasons. Build ponds wherever possible. Irrigate whenever practical. Water is the best investment a farmer can make. One drought pays for an irrigation system.

Biological Nitrogen Fixation: Grow your own fertilizer. Rotate nitrogen fixing cover crops with cash crops. Plant small grains and clover together. Seed maize into roller-crimped Red Clover (Trifolium pratense). Transplant vegetables into Dutch White Clover (Trifolium repens). Topseed cash crops with low growing legumes. Include 50% legumes in pasture and cover crop mixes.

Increase Edge Effects: Divide big fields into smaller fields. Plant hedgerows and windbreaks. Mix fields with pastures, orchards, hay fields and forest. Grow unrelated crops in narrow strips = strip cropping. Plant borders and head rows with clover and insectary crops. The idea is to attract and maintain large populations of beneficial insects. “The good bugs eat the bad bugs”.

Plant Multi-Species Cover Crops: Mixtures of plants repel insect pests, fix more nitrogen, better resist drought, and produce more organic matter than plants grown alone. Plants in mixtures cooperate with each other sharing water and nutrients through fungal networks. Multi-species cover crops can fix more than 100 pounds of nitrogen per acre; this nitrogen is not accounted by conventional soil tests. Mixed species cover crops promote maximum earthworm populations, up to 8 million worms (8 tons) per acre = 184 worms per cubic foot of topsoil.

Long Rotations Increase Yields: 7-year rotations best control soil diseases and insect pests. Never follow similar crops in sequence (oats & wheat; carrots & potatoes; lettuce & spinach). Never follow crops in the same botanical family (tomatoes & peppers; pumpkins & squash). Never follow plants sharing common pests or diseases.

Grass Crops Make Deep Soils: Integrate perennial grass crops into field rotations. This is called Ley Farming. Perennial pastures and grazing animals promote large earthworm populations = 1 ton per acre = 1 million worms per acre = 23 worms per cubic foot of topsoil = 120 miles of earthworm burrows per acre. Worms produce vast amounts of castings = manure, more than needed for any commercial crop.

Integrate Animals and Crops: Use grazing animals to fertilize fields. Practice Rotational Grazing, Mob Grazing, Stomp Seeding, Cattle Penning, and Folding = Yarding to improve fields and increase yields. Sustainable agriculture is difficult to achieve without farm animals.

Plant Weeds and Crops Together: Reserve 5% to 10% of farm for native weeds. Plant weeds in narrow strips within and around fields. Grow orchards and vine crops in weeds. Weeds provide food, shelter, and alternate hosts for beneficial insects that protect cash crops. “Weeds are the shepherds of the garden”. More weeds = less insect pests.

Plant Flowers with Crops: Most beneficial insects have small mouth parts and so they need tiny flowers on which to feed. Healthy farms grow many small-flowered plants to encourage maximum populations of helpful insects. For best results plant flowers and weeds next to crops needing protection. Sow flowers around fields, orchards, vineyards — anywhere there is open space. More flowers = less pests.

Making Sense of It All

Biological agriculture requires patience. Converting a field from conventional chemical agriculture usually requires 12 to 15 years before the soil is healthy enough to sustain commercial yields without added fertilizer.

Active biological soils easily produce 160 bushels (8,960 pounds) of maize per acre without plowing, fertilizer, herbicides, or cultivation. Irrigated fields can exceed 200 bushels (11,200 pounds) per acre.

On biologically managed soils, most Japonica rice varieties yield 3.5 ounces of grain per plant = 9,528 pounds per acre when plants are direct seeded 12 inches equidistantly on drip irrigated fields. (Indica rice varieties yield less, about 1.5 ounces of grain per plant = 4,083 pounds per acre).

Related Publications: The Twelve Apostles; Polyculture Primer; Strip Cropping Primer; Worm Farming; Managing Weeds as Cover Crops; Intensive Rice Culture Primer; Weed Seed Meal Fertilizer; Earthworm Primer; Planting Maize with Living Mulches; Living Mulches for Weed Control; Crops Among the Weeds; Forage Maize for Soil Improvement; Forage Radish Primer; The Edge Effect; Coppicing Primer; and Rototiller Primer.

Would You Like To Know More? Please contact the Author directly if you have any questions or need more information about Biological Agriculture.

Eric Koperek. Office Address: 413 Cedar Drive, Moon Township, Pennsylvania, 15108 United States of America. Cellular Telephone Number: 412-888-7684. E-Mail Address: erickoperek@gmail.com. Website Address: http://www.worldagriculturesolutions.com

About The Author: Mr. Koperek is a plant breeder who farms in Pennsylvania during summer and Florida during winter. (Growing 2 generations yearly speeds development of new crop varieties).





“Can Sunnhemp Outgrow Morning Glory?”

I get the most interesting questions on my website.  Some provoke editorial response:

Biological agriculture is a race between crops and weeds.  The farmer’s job is to give his crops an unfair advantage in competition for sunlight.  One way is growing cover crops to smother invasive weeds.  Sunnhemp (Crotalaria juncea) is an effective mulch crop for weed suppression.

Wild Morning Glory (Ipomoea species) is the bane of my existence.  Closely related to sweet potatoes, morning glories thrive in poor soils, are immune to most insects, and grow so rapidly that they overwhelm all surrounding plants.

In Butler County (30 miles north of Pittsburgh, Pennsylvania) morning glories are like intermittent epidemics.  Some years you rarely see a vine.  Other seasons your fields are covered.

I returned from a business trip to find my neighbor’s back-40 strangled by herbicide resistant morning glories.  Vines blanketed the land like Kudzu (Pueraria montana).  He sprayed tankfuls of glyphosate trying to save his soybeans.  All that did was make the weeds mad.   6 weeks later, vengeful vines obliterated his GMO corn.

My neighbor was hitching up his 8-bottom moldboard when I offered to help.  George has a dim view of “organic farming” but he likes spending money even less, so it was not a difficult decision:  Plow everything under or let Eric make a fool of himself.  Hmm. . .

My solution:  60 pounds per acre of rotary seeded Sunnhemp followed by a 30-year-old sickle-bar mower.  Sow-And-Mow eliminated his weed problem.  The Sunnhemp reached 8 feet high in 7 weeks, shading all competing vegetation.

Next, I broadcast 12 pounds per acre of Dutch White Clover (Trifolium repens) into the standing cover crop then mowed the Sunnhemp with a bush hog.

In Autumn I no-till drilled 60 pounds per acre of pelleted Winter Rye (Secale cereale) into the mature clover.  The field required no other work until grain harvest the following summer.

There is a lesson to be learned here:

RULE:     Always seed cover crops at maximum rates for weed control.

RULE:     Do not plow, disk, or harrow — this only encourages weed germination.

RULE:     Keep fields covered with growing crops at all times to kill weed seedlings.

Follow these rules and weeds will NEVER get established in your fields.

This is what Biological Agriculture is all about:  Crop competition keeps weeds controlled without need for mechanical cultivation or chemical herbicides.  Let nature do the heavy lifting.

Related Publications Include:     Managing Weeds as Cover Crops; Trash Farming; Planting Maize with Living Mulches; Living Mulches for Weed Control; and Crops Among the Weeds.

Other Articles of Interest:     Weed Seed Meal Fertilizer; Organic Herbicides; Pelleted Seed Primer; and Forage Maize for Soil Improvement.

Would You Like to Know More?     Please visit:  http://www.worldagriculturesolutions.com  — or —  send your questions about biological weed control to:  Eric Koperek, Editor, World Agriculture Solutions, 413 Cedar Drive, Moon Township, Pennsylvania 15108 United States of America  — or —  send an e-mail to:  worldagriculturesolutions@gmail.com

About the Author:     Mr. Koperek is a plant breeder who farms in Pennsylvania during summer and Florida over winter.  (Growing 2 generations yearly speeds development of new crop varieties).

 

2012 ORGANIC CABBAGE TRIAL

This is a demonstration project:  A single field without controls or replications for statistical analysis.  The purpose of this trial is to explore possibilities before launching a full-scale research program.

Experimental Location:  Homestead, Florida, United States of America.  25.47 degrees North Latitude, 80.52 degrees West Longitude.

Climate:  Homestead has a semi-tropical monsoon climate with a hot, humid summer and a cooler, drier winter.  Average annual temperature = 74.8 degrees Fahrenheit = 23.75 degrees Centigrade.  Average annual rainfall = 58.23 inches = 147.90 centimeters.  Average January low temperature = 56 degrees Fahrenheit = 13.2 degrees Centigrade.  Average January high temperature = 77 degrees Fahrenheit = 24.8 degrees Centigrade.  Frost Free Growing Season = approximately 355 days.  Homestead gets about 5 to 10 frosts (36 degrees Fahrenheit) and freezes (32 degrees Fahrenheit) each winter.

Experimental Plot Size:  1 acre = 208 feet x 208 feet (approximately).

Soil Type:  Everglades Peat = Muck

Crop Rotation:  Sunn Hemp (Crotalaria juncea) was planted in spring 2012 to suppress weeds and control root knot nematodes.  Hemp cover crop was shredded with a forage chopper then Crimson Clover (Trifolium incarnatum) was broadcast seeded over hemp mulched field.  Cabbage seedlings were transplanted into rotary mowed crimson clover in November 2012.

Tillage:  Field was mulched using a common silage chopper.  Crimson clover was cut with a rotary mower.  Cabbage seedlings were planted using a no-till transplanter with a fluted coulter.

Plants Per Acre:  Cabbage transplants were set 18 inches apart in rows 30 inches apart = approximately 11,000 plants per acre.  (138 plants per row x 83 rows per acre = 11,454 plants per acre exactly).  80% field survival is common so final plant density = approximately 9,000 plants per acre.

Crop Variety:  Brassica oleracea cultivated variety “Golden Acre”.  This is an early season (58 day) round cabbage with small heads averaging 3 to 4 pounds each.

Common Weed Varieties:  Bull Thistle (Cirsium vulgare), Coffee Senna (Senna occidentalis), Hemp Sesbania (Sesbania exaltata), Morning Glory (Ipomoea species), Lambs Quarters (Chenopodium album), and Pigweed (Amaranthus blitum).

Weed Management:  Sunn hemp cover crop and crimson clover living mulch eliminated most weeds.  Field was better than 95% weed free so no herbicides were used for this trial.

Weed Spacing:  Approximately 2,200 weeds grew above the crimson clover living mulch = approximately 1 weed per 19.8 square feet.  Clumps of weeds were hand thinned to single weeds spaced about 4 to 5 feet apart.

Irrigation:  Overhead sprinkler irrigation, 1 to 2 inches applied each week as needed.

Organic Fertilizers:  Greensand and colloidal phosphate rock were broadcast with sunn hemp seed according to soil test recommendations.  Hemp seed was covered with 20 tons = 40,000 pounds of composted stable bedding.  Fish emulsion and liquid seaweed (Kelp) were used as starter fertilizers for cabbage transplants.

Insect Control:  Cabbage plants were sprayed with a harmless biological insecticide “BT” = Bacillus thuringiensis subspecies kurstaki strain SA-12 every 7 to 10 days throughout the growing season.  BT is a naturally occurring bacterial disease that kills caterpillars = juvenile forms of moths and butterflies.

Cabbage Yield:  Approximately 9,000 marketable heads were harvested.  Average head weight = approximately 3.375 pounds = 3 pounds 6 ounces (normal range is 3 to 4 pounds).  Yield per acre = approximately 30,000 pounds = 15 tons.

Production Costs:  $5,924 per acre (mostly for amortized irrigation system and farm machinery).

Cabbage Income:  30,000 pounds cabbage (9,000 marketable heads) x $0.35 per pound organic produce premium wholesale price = $10,500 gross income.

Net Income:  $10,500 gross income – $5,924 production costs = $4,576 net income from 1 acre of organic cabbage sold wholesale.  ($4,576 net income / $10,500 gross income) x 100 = 43.58% before tax profit.  ($4,576 net income / $5,924 production cost) x 100 = 77.2451 = 77% gross return on investment.

Agronomy Notes:

>>>  Most south Florida soils are coarse sands with very low humus content (often less than 2%).  Large amounts of organic matter must be added to these soils to keep them productive.  Cash crops must be rotated with soil building cover crops in order to maintain humus levels at 3% or above.

>>>  Muck soils also require large amounts of organic matter to replace humus lost to accelerated decomposition when swamps are drained.  Drainage and cultivation expose peat soils to large amounts of oxygen.  Rapid oxidation causes soil subsidence if organic matter is not replaced.

>>>  Root knot nematodes are serious agricultural pests in south Florida.  The most economical control method is to rotate cash crops with highly nematode-resistant cover crops like Sunn Hemp (Crotalaria juncea), Velvet Bean (Mucuna deeringiana), Cowpea (Vigna unguiculata), or Hairy Indigo (Indigofera hirsuta).

>>>  Sunn hemp, forage maize, and silage corn produce enormous amounts of organic matter for soil improvement (surface mulch or green manure).  Few farmers use hemp or maize as green manure or mulch crops because the plants must first be shredded in order to decompose quickly.  (If long-lasting mulch is desired, knock down cover crops with a roller-crimper then plant through dead mulch with a no-till seeder or transplanter).

>>>  Widely spaced weeds did not appear to have any negative effects on cabbage yield or quality.  Many cabbages growing near weeds were larger than those without any weed competition.  Light shade may be beneficial for cabbage growth.

>>>  Crimson Clover (Trifolium incarnatum) is often sown along Florida highways because it has large flowers.  Crimson clover makes good living mulch because it normally grows only 6 to 12 inches high.  Ideal living mulches grow short so they do not compete with crop plants for light.

Would You Like To Know More?  Please contact the Author directly if you have any questions or need additional information about using living mulches for weed control.

Please visit:  http://www.worldagriculturesolutions.com  — or —  send your questions to:  Agriculture Solutions, 413 Cedar Drive, Moon Township, Pennsylvania, 15108 United States of America  — or —  send an e-mail to:  Eric Koperek = worldagriculturesolutions@gmail.com

About the Author:  Mr. Koperek is a plant breeder who farms in Pennsylvania during the summer and Florida during the winter.  (Growing 2 generations each year greatly speeds development of new crop varieties).

CROPS AMONG THE WEEDS

As I sit here at my drafting table, the local code enforcement officer is looking askance at my “lawn” which is not mowed at the regulation height of 6 inches or less.  Instead, I have 2 research plots in front of my office, both planted with Peruvian land race potatoes.  One plot is mulched with stable bedding, the other plot covered with weeds up to 4 feet high.  The mulched potatoes are riddled with flea beetles; there are so many holes that the leaves look like window screening.  3 feet away, potatoes growing in weeds have only a few scattered holes in their leaves.  These results are typical of crops grown au naturel = in the wild.

When I was young, “good” farmers were judged by the straightness of their furrows and the cleanliness of their fields.  Bare earth and weed-free crops were the standard of good agricultural practice at that time.  Contrarian that I am, my fields were always less than pristine.  Many decades later, my crops are still a herbicide salesman’s nightmare.  The reason is that I have long since stopped trying to eradicate weeds.  Now, I manage them.  I encourage them.  I even plant weeds because I never seem to have enough wild plants in my fields.

Am I daft?  Certainly.  I am also wealthy because I don’t have big pesticide bills to pay.  My crops may not make record yields, but I am not aiming for a blue ribbon at the County Fair.  I measure success on the bottom line.  Who wants to spend $2,000 to plant a half acre of peppers?  I gladly trade low production costs over huge input bills.  I make more money by saving money.  As an added benefit, my customers can pick vegetables without worrying about being poisoned by agricultural chemicals.  I don’t need “organic” certification.  My customers pay me not to spray.  That’s good business any way you figure it.

Down the road I have a wilderness of citrus interspersed with live oaks, Spanish moss, and pangola grass.  It’s an old orchard that is long overdue for rotation, but it still makes me money because I spend almost nothing to maintain the trees.  Every now and then I spread some racetrack manure.  The irrigation system turns itself on and off.  The weeds grow 6 feet high.  Once a year, right before harvest, I mow between the trees — just enough so folks can pick the fruit.  Result:  No bugs on my trees.  Across the hedgerow of old-fashioned hibiscus, my neighbor clean cultivates his orchard and sprays with robotic frequency.  Every spider mite in the district comes to eat his leaves.  Chemical companies use his orchard to test new pesticides.  The mites don’t seem to mind; they eat insecticide like salad dressing.

Up the road are stake-less tomatoes (with thick, upright stems) transplanted into Berseem = Egyptian clover (Trifolium alexandrinum).  I used to walk the fields pulling any weed not blotted out by the clover.  Now, I don’t bother.  I let the weeds grow wild.  Occasionally, I thin the weeds if they grow too thick.  My fields look messy but I rarely see a hornworm.

Across the lane is my pride and joy: A jungle of weeds and melons.  The weeds grow over my head and the melons grow over the weeds.  The trick is to mulch the young melons (or mow the weeds) just until the vines start to run.  After the melons are well established, the crop fends for itself.  Vine crops thrive in the light shade cast by nearby weeds; the best fruits come from the weediest parts of the field.  Insect pests don’t like the broadleaf jungle so I never have to spray vine crops grown in weeds.

Intelligent Weed Management

Tired of getting sick every time you spray a field?  Use the following rules-of-thumb to create a healthy cropping system tailored to your local soil and climate:

>>>  Weeds are a type of living mulch:  Plants grown to reduce soil erosion, enhance soil fertility, attract beneficial insects, and help retain soil moisture.  Before planting into weeds or any other living mulch, remember that two crops are growing on the same land at the same time — the mulch crop and a cash crop.  Success requires careful management or both crops may fail.

>>>  All living mulches compete with their companion crops.  The extent of competition and consequential yield loss vary with management and crop type.  For example, under drought conditions shallow rooted crops generally show more yield loss than deep rooted crops.  Low or slow growing crops many be overwhelmed by more aggressive companion crops.  As a general rule, living mulches are not recommended where drought is expected because yield losses are too high.  However, many crops benefit from living mulches during dry conditions — the companion plants shade the soil, retard evaporation, and increase humidity.

>>>  Weeds make good living mulches for transplanted vegetable crops provided:  (1)  Crops are irrigated,  (2)  Crops are fertilized, and  (3)  Crops are protected for the first 4 to 6 weeks from competition by the weeds.

>>>  1 to 2 inches of water are needed weekly to grow both weeds and vegetables without undue competition for moisture.  If water is limiting, it is best to drip irrigate the cash crop rather than water the entire field.

>>>  Weeds grow quickly so there is often intense competition for light when cash crops are young.  Mow or roll a narrow strip where transplants will be set, or apply a circle of mulch around transplants to give crops a head start.  Once crops are well established they will usually hold their own.  If necessary, prune or thin weeds to increase light penetration for cash crops.

>>>  Roller-crimpers are better than mowers for weed management.  Mowing stimulates plant regrowth; crimping does not.

>>>  Aggressive, fast-growing crops like tomatoes, peppers, okra, melons, squash, sweet potatoes, gourds and pumpkins all do exceptionally well when transplanted into weeds.  Cucumbers are slower growing and require extra mulch to protect them from early season competition with weedy nurse crops.

>>>  As a general rule, broadleaf weeds make better nurse crops than wild grasses which are more competitive and difficult to manage.  Where weedy grasses are a problem, burn the fields or treat with organic herbicide before transplanting cash crops.

>>>  It is good practice to leave strips of meadow, weeds, wildflowers, cover crops, or other living vegetation between or around fields of cash crops.  These buffer strips act as refuges for beneficial insects needed to control crop pests.  The best refuge plants have small flowers so that good bugs can easily obtain pollen and nectar.  Examples include buckwheat, turnip, rape, clover, and any member of the botanical family Apiaceae = Umbelliferae = carrot family = Anise, Dill, Angelica, Chervil, Celery, Caraway, Coriander, Cumin, Carrot, Fennel, Lovage, Parsnip, and Parsley.

>>>  As a general rule, it is unwise to harvest fields all at once.  Divide fields into strips or parcels then harvest each sequentially.  Leaving un-harvested areas allows predatory insects to migrate from disturbed spaces.  The idea is to preserve a balance between predator and prey to prevent sudden population crashes.  Translation:  You want a resident population of good bugs waiting to eat any bad bugs that fly into your fields.

>>>  If weedy fields are unavailable for planting, seed conventional cover crops.  The best living mulches are low-growing, nitrogen fixing legumes like Dutch White Clover (Trifolium repens), Crimson Clover (Trifolium incarnatum), and Red Clover (Trifolium pratense).  Remember to inoculate legume seeds with compatible nitrogen-fixing rhizobium bacteria.

>>>  Where land is weak or vegetation sparse, plant weeds to restore soil health.  Spread weedy hay over sick fields.  Seed wildflowers adapted to your local climate.  Broadcast grain elevator screenings liberally; screenings are dirt cheap (often free) and contain many weed seeds.  If necessary, seed a nurse crop of common rye (Secale cereale) or millet (Panicum miliaceum) to help establish a vigorous weed population.

>>>  Where agriculture is problematic (bare soils, unfavorable climate, no water or fertilizer) it is best to seed mixed cover crops to mimic the diversity of naturally weedy fields.  Choose 2 cool season grasses + 2 cool season broadleaf plants + 2 cool season legumes + 2 warm season grasses + 2 warm season broadleaf plants + 2 warm season legumes.  Include 2 root crops (forage radish, turnip, or stock beet) to help break up compacted soil layers.  Total:  14 different cover crop species.  Plant at least 20 pounds of mixed cover crop seed per acre = 23 kilograms per hectare.

>>>  Weeds are nature’s band-aid; they are specifically evolved to rapidly cover disturbed soils.  Tillage encourages weed germination and stimulates weed growth.  Consequently, to manage weed populations avoid tillage whenever practical.

>>>  It is best not to disturb healthy populations of weeds or cover crops once they are well established.  Broadcast, transplant, or drill cash crops into surface vegetation.  Use equipment specifically designed for no-till planting on trashy, high-residue fields.  For surface (broadcast) planting, increase seeding rates to maximum levels or use clay pelletized seed.  (Pelleted seeds greatly increase plant survival).

>>>  Weeds are most efficiently controlled by using the natural competitive abilities of crop plants.  For example, top seed forage radish (Raphaus sativus variety longipinnatus) over oats when they start to head out.  The radish understory crop grows slowly until grain harvest.  After oats are combined, radish growth explodes quickly covering the field and blotting out nearly all competing plants.  Weeds never have a chance to get established.  Top seeding into standing vegetation is a great way to grow small-seeded crops without using herbicides.

>>>  Grind weed seeds into flour and use like cotton seed meal as a cheap, slow-release organic fertilizer.  1 ton of weed seed meal supplies approximately 54 pounds of nitrogen, 18 pounds of phosphorous, and 18 pounds of potassium (2.7% nitrogen, 0.9% phosphorous, and 0.9% potassium by weight).  Note:  There is no standard analysis for weed seed meal.  NPK values vary depending on the mixture of species in local samples.

>>>  Every farm has different soil and micro-climate.  Agronomic practices that work in one field may fail in another.  For best results, every farmer should maintain one or more research plots so that new methods can be tested and adapted to local conditions.

>>>  Effective weed management requires careful observation and close attention to detail.  Every farmer must become a weed biologist.  Timing of field operations is critically important.  Planting 2 weeks earlier or later can result in stunning success or dismal failure.  Continuous experimentation  is needed to develop weed control programs for each individual crop, field, and farm.

Organic No-Till Weed Control

Conventional no-till agriculture relies on synthetic herbicides to control weeds.  Following no-till method uses an all-natural herbicide substitute made from acetic acid (vinegar) and citric acid (lemon juice).  Combination makes a non-selective vegicide that works like Roundup (glyphosate) to kill both grasses and broadleaf weeds.

Organic Herbicide Formula By Weight For Farming

10%          Glacial Acetic Acid (liquid)               100 grams

5%            Citric Acid (powder)                         50 grams

83%          Water                                                 830 grams

2%            Wetting Agent (surfactant)            20 grams

100%       TOTAL PARTS BY WEIGHT        1,000 grams

This is a non-selective herbicide = kills everything.  Wetting agent is essential for herbicide to stick to leaves.  For best results, apply herbicide on a warm, sunny day when weed leaves are dry.  Herbicide works best on annual broadleaf weeds and grasses 6 inches or less in height.  This is a burn down herbicide; only surface vegetation is killed.  Herbicide will not kill perennial weeds with deep taproots or grasses with growing points below soil surface.  Herbicide is not translocated to roots or other plant parts.  Weeds die from water loss through their leaves.  Caution:  Glacial acetic acid (industrial strength vinegar) is strongly corrosive.  Protect skin and eyes from acid.  Wear gloves and goggles when mixing and spraying herbicide.  Rinse with pure water if necessary.

Organic Herbicide Formula By Volume For Gardening

This formula uses common vinegar (5% acetic acid) and bottled lemon juice (3% to 8% citric acid) that can be purchased from neighborhood grocery stores.

1,250 milliliters          Common White Vinegar          5 Cups

250 milliliters            Bottled Lemon Juice                 1 Cup

30 milliliters              Dish Washing Detergent          2 Tablespoons

1,530 milliliters        TOTAL VOLUME                     6 1/8 Cups

Above concentration will kill annual broadleaf weeds and grasses 6 inches or less in height.  For best results apply herbicide on a warm, sunny day when weed leaves are dry.

Organic No-Till Procedure

This technique works best with small grains, turnips, and other crops that can be broadcast rather than drilled.

(1)  Select ground with good weed or crop cover.  Weeds or nurse crop will be used as mulch to protect germinating cash crop.  (2)  Broadcast seed into standing weeds or cover crop.  (3)  Kill weeds or nurse crop with organic herbicide.  (4)  Mow weeds or nurse crop when dead.  (5)  If desired, top seed established crop plants with Dutch White Clover (Trifolium repens), Red Clover (Trifolium pratense), Crimson Clover (Trifolium pratense),  or other low growing legume.

Mulch-In-Place

>>>  It is impractical to mulch large fields by hand because the volumes required are too large.  The solution is to grow a mulch crop then kill it by mowing, crimping, or spraying with herbicide.  Seeds or transplants are then set through the surface mulch.

>>>  8,000 to 10,000 pounds of straw mulch per acre are needed to achieve 90% weed control.  A crop of rye grain (Secale cereale) 5 to 6 feet high normally yields 4 to 5 tons of biomass per acre.  Most mulch-in-place systems use grass crops because cereal straw decomposes slowly.  Broadleaf cover crops rot faster leaving holes in the mulch through which weeds grow.

>>>  Mowed fields are best transplanted by hand because no-till planters often get clogged by loose plant materials.  Sickle-bar mowers are better than rotary or flail mowers because they do not chop or scatter the mulch.  Good weed control requires a dense layer of long straw which blocks sunlight and acts as a physical barrier to weed emergence.

>>>  Rolling down a cover crop is faster than mowing.  Roller-crimpers are cheaper than mowers and cost less to operate.

>>>  Roller-crimped fields are ideal for no-till seeders and transplanters.  Always work “with the grain” = in the same direction as the cover crop or weeds are rolled.  Never work against or across the grain or surface mulch will clog planting machinery.

>>>  Mulch crops are best killed when in full flower or early seed set.  Earlier harvest reduces mulch yields and increases chances of regrowth.  (You do not want the cover crop competing with the cash crop).  Late harvest risks reseeding by the mulch crop.  (Seed carryover between seasons turns a good mulch crop into a bad weed problem).  For example:  The best time to kill cereal rye is when the seeds are in their milk or soft dough stage.  Harvest at this time guarantees maximum straw yield and zero regrowth.

>>>  It is good practice to top seed a low growing legume like Dutch White Clover (Trifolium repens) immediately after seeding or transplanting cash crops.  Clover plants fill any holes in the mulch and increase biodiversity in the field.

>>>  To make your own roller-crimper, start with a steel cylinder 12 to 24 inches diameter, like a lawn roller.  The cylinder can be any convenient length; 8 to 10 feet long is the smallest roller recommended for efficient commercial farming.  Weld dull blades of 1/4 inch steel to the roller.  Each blade should be 4 to 5 inches high.  Space blades 7 to 8 inches apart.  Angle blades across the cylinder in a wide V-shape like a chevron; this prevents roller from bouncing around and greatly improves crimping effectiveness.  Mount roller on frame attaching to a 3-point hydraulic hitch on tractor front.  When finished, roller and frame should weigh 3,000 pounds; this weight is necessary to thoroughly crimp mulch plants so they do not regrow.  If desired, roller can be designed to hold water ballast so that weight can be increased for tough-stalked mulch crops like forage maize.  Detailed plans for roller-crimpers are available from the Rodale Institute = http://www.rodaleinstitute.org

Medieval No-Till

Plowing in the Middle Ages was hard, slow work.  Heavy wood plows were ponderous, inefficient, and difficult to turn.  A man with a team of 2 oxen took 3 whole days to plow and harrow a small 1-acre field just 22 yards wide x 220 yards long.  The alternative was even worse:  Digging by hand was back-breaking labor requiring at least 30 days to till 1 acre with spade or fork.  It did not take long for farmers to figure out easier ways to grow crops.  The Dutch were the first to apply the new agricultural technology which married free-range pig ranching with a clover-wheat-turnips rotation:

In spring, fence off plot of Dutch White Clover (Trifolium repens) and turn in swine.  (Pigs like Dutch clover because it is sweet.  Do not put rings in hogs’ snouts or they will not be able to root).  Pigs “plow” soil like a rototiller, uprooting all vegetation.  Broadcast spring wheat onto pig-tilled earth then drive sheep back and forth across land.  Sheep stomp wheat seeds into ground.  When wheat starts heading out (or at least 2 weeks before harvest) broadcast turnip seed over standing grain.  After wheat is cut, fast-growing turnip leaves carpet field overwhelming competing plants.  About 2 weeks before turnip harvest broadcast clover seed over standing foliage.  When roots are lifted, young clover plants blanket field, blotting out most weeds.  Clover cover crop protects and fertilizes soil until following spring when rotation cycle is repeated.

On a typical farm in northern France or upstate New York, no-till clover-wheat-turnips reliably yields 40 bushels of wheat per acre (2,400 pounds per acre = 2,694 kilograms per hectare) without hybrid varieties, irrigation, tractors, diesel fuel, chemical fertilizers, synthetic herbicides, insecticides or fungicides.  (Note:  This rotation works equally well with Oats = Avena sativa, Barley = Hordeum vulgare, Rye = Secale cereale, or Millet = Panicum miliaceum).

Sow-And-Go

No-Till agronomy is not a new idea; no-till was practiced in the Middle Ages (and probably earlier).  Then, no-till was used mostly by small farmers who did not own draft animals — or — as an emergency measure practiced only when primary crops failed or when an army swept through the district (stealing all of the food and farm animals).  Medieval records indicate that no-till was a desperation technology often used by peasants to prevent starvation:

Foul weather prevailed through spring.  Fields could not be plowed so farmers sowed in the rain, scything weeds to hide the seed from birds and mice.  By Divine Grace a crop was made, only two thirds of normal harvest but sufficient to forestall general famine among the tenants.  Tithes were not collected this autumn and the Church distributed alms and acorns to the poor.  Annals of the Abbey of Saint Marien [Lake Constance, Germany] Anno Domini 1340

How To Do It:  Find the weediest field possible.  Broadleaf weeds are best and thistles best of all.  (Thistles indicate fertile soil).  Broadcast seed directly into standing weeds.  (Pelleted seed greatly increases seedling survival, especially for large-seeded crops like peas and beans).  Mow down weeds with a scythe (or use a lot of people with sickles or machetes).  Cut weeds act as mulch for germinating crop.  Pray for rain.  Come back at harvest time and hope for the best.  Yields are low but surprisingly economic (because there are no costs other than seeding and harvest).

Medieval No-Till Yields of Dry Peas:  Poor Crop:  4 to 5 bushels = 250 to 300 pounds per acre.  Average Crop:  6 to 8 bushels = 400 to 500 pounds per acre.  Good Crop:  10 to 13 bushels = 600 to 800 pounds per acre.

Medieval No-Till Yields of Spring Wheat:  Poor Crop:  4 to 6 bushels = 275 to 400 pounds per acre.  Average Crop:  7 to 10 bushels = 440 to 650 pounds per acre.  Good Crop:  11 to 17 bushels = 660 to 1,040 pounds per acre.

Sow-and-Go planting is ancient technology adapted for modern machinery.  In India it is called Zero Budget Natural Farming.  Australians use the term No-Kill Cropping.  Some call it Do Nothing Farming, Zero Petroleum Agriculture, or Minimum Effort Agronomy.  Less charitable souls use the term Subsistence Agriculture.  Regardless of label, the principle remains identical:  Sow seed (without tillage or any other investment) then forget about the crop until harvest time.  Small fields are hand planted, large areas seeded with no-till drills.  The trick is to sow when plants normally drop their seeds, usually during the dry or cold season when weeds are dead or dormant.  Native vegetation is left standing; this is necessary to prevent erosion, feed soil organisms, aid water infiltration, slow wind speed, provide shade, increase humidity, improve biodiversity, and trap snow.

Sow-and-Go agronomy is particularly suited where climate or soils are problematic, especially drought-prone, semi-arid regions like Australia and the western prairies of North America.  Old farms, hay fields, pastures, range lands, or any relatively flat area of grass or weeds is suitable for Sow-and-Go planting.  For best results, no-till planters should have razor sharp coulters to slice through surface vegetation, chisel tines or cultivator shoes to open a narrow slot for seeding, and double press wheels to ensure good seed to soil contact.  Minimal soil disturbance is essential for success.  Pelleted seeds are recommended for broadcast planting or land restoration.

In years with good rainfall, Sow-and-Go crops typically yield 60% to 70% of conventionally grown plants.  Translation:  Expect 40% yield losses compared to full-tillage or herbicide treated crops.  Higher yields are sometimes possible on particularly deep or fertile soils.  Drilled crops generally yield more than broadcast seeded crops, especially when seeds are large, weather is dry, or when planting naked seeds.

Sow-and-Go cereal culture is the wave of the future.  Farmers should set aside a few acres to test this new biological technology which can be used to grow any kind of small grain including pseudo-cereals like amaranth (Amaranthus caudatus), buckwheat (Fagopyrum esculentum), and quinoa (Chenopodium quinoa).  If weedy fields are not available, seed mixed cover crops of annuals or perennials then plant into this artificial prairie.  Soil fertility and structure improve rapidly under continuous vegetation, especially if legumes and root crops are included in the mix.  Each year planting becomes easier and yield potential increases.  Results are often surprising and cannot be easily predicted because of complex interactions between many species in a new, “designer ecology”.  Careful observation, precise timing, and constant adjustment are needed to “tweak” the system to favor particular crops.  Real ecological management is required — the very opposite of robotic, spray-by-calendar conventional agriculture.  Sow-and-Go farmers are never bored; they are always making new discoveries in their fields.

Related Publications

The Twelve Apostles; Managing Weeds as Cover Crops; Weed Seed Meal Fertilizer; Trash Farming; No-Till Hungarian Stock Squash; Planting Maize with Living Mulches; Organic Herbicides; Pelleted Seed Primer; Living Mulches for Weed Control; Forage Maize for Soil Improvement; Forage Radish Primer; and Rototiller Primer.

For More Information

Readers who have any questions or require additional information about growing crops in weeds should contact the Author directly:

Please visit:  http://www.worldagriculturesolutions.com  — or —  send your questions to:  Eric Koperek, Editor, World Agriculture Solutions, 413 Cedar Drive, Moon Township, Pennsylvania, 15108 United States of America  — or —  send an e-mail to Eric Koperek = worldagriculturesolutions@gmail.com

About The Author

Mr. Koperek is a plant breeder who farms in Pennsylvania during summer and Florida over winter.  (Growing 2 generations yearly speeds development of new crop varieties).