FRENCH INTENSIVE RICE AGRONOMY 1930 – 1980

Application of intensive gardening methods to rice fields increases grain yields substantially.

RICE RESENTS TRANSPLANTING

Bare Root Transplants Grown in Manure Compost (40 days from seeding): 3,122 pounds per acre

2-Inch Manure Cubes: 5,303 pounds per acre

5-Ounce Manure Pots: 6,089 pounds per acre

Direct Seeded Sprouted Rice: 7,620 pounds per acre

Transplant shock reduces yields. Pots are better than cubes for preventing root injury. Transplant seedlings directly first root shows on pot or cube. There is no advantage to delayed planting. Set transplants as soon as practical. Every day lost lowers grain yield. For best results plant pre-sprouted seeds.

RICE DISLIKES FLOODING

Paddy Rice (continuous flooding 8 inches deep): 2,884 pounds per acre

Upland Rice (sprinkler irrigated 28 inches): 4,400 pounds per acre

Rice tolerates flooding but does not thrive. For best yields keep fields moist but not wet. Roots need oxygen to absorb water and nutrients.

CULTIVATION HARMS RICE

Machine Cultivated 4 Times (every 14 days): 2,911 pounds per acre

Hand Weeded 4 Times (every 14 days): 3,460 pounds per acre

56-Day Flood 8 Inches Deep: 3,885 pounds per acre

Flame Weeded 4 Times (every 14 days): 4,336 pounds per acre

Dutch White Clover Living Mulch: 4,532 pounds per acre

Burlap Mulch 2 Bags = 4 Layers Thick: 5,617 pounds per acre

Chopped Weed Mulch 6 Inches Deep: 6,503 pounds per acre

Velvet Bean Mulch-In-Place: 6,924 pounds per acre

Any practice that disturbs soil ecology lowers crop yields. For best results do not plow, disk, harrow, or cultivate fields. Do not interfere with natural biological processes. Try to mimic nature whenever practical.

CROWDING LOWERS RICE YIELD

1 Pre-Sprouted Seed Per Hill: 6,887 pounds per acre

1 Transplant Per Hill: 4,143 pounds per acre

3 Transplants Per Hill: 3,681 pounds per acre

5 Transplants Per Hill: 2,343 pounds per acre

10 Transplants Per Hill: 2,616 pounds per acre

15 Transplants Per Hill: 2,569 pounds per acre

(12-inch equidistant spacing. 208 rows x 208 plants per row = 43,264 plants per acre. 40-day transplants from seeding).

Equidistant spacing increases crop yields by reducing plant competition for light and nutrients. Direct seeded crops usually outperform transplants. Transplant shock is not always immediately apparent; crops can be retarded 2 to 3 weeks which lowers yields.

IRRIGATION BOOSTS GRAIN YIELD

20 Inches Rainfall: 1,298 pounds per acre

Continuous Flooding 1 Inch Deep: 2,559 pounds per acre

20 Inches Rainfall + 8 Inches Irrigation at Grain Filling: 3,003 pounds per acre

Monsoon Rice (Exceeding 28 Inches without Flooding): 3,854 pounds per acre

Ridge & Furrow Irrigation (28 inches): 4,235 pounds per acre

Sheet Irrigation (28 inches) = No Standing Water: 4,870 pounds per acre

Sprinkler Irrigation (28 inches): 5,736 pounds per acre

Drip Irrigation (28 inches): 6,480 pounds per acre

Most agricultural soils do not have enough oxygen for optimum crop growth. Flooded fields yield poorly.

FERTILIZER INCREASES RICE YIELD

No Fertilizer (Rice After Fallow): 3,014 pounds per acre

Supplemental Phosphorus Only (40 pounds per acre): 3,949 pounds per acre

5-10-5 Broadcast (1 Ton Per Acre = 100 Pounds Nitrogen): 4,642 pounds per acre

Velvet Bean Mulch-In-Place (98 Pounds Nitrogen Per Acre): 5,220 pounds per acre

Composted Cow Manure (8 Tons Per Acre = 104 Pounds Nitrogen): 5,833 pounds per acre

Manure Lagoon Water (0.75 Acre-Inch = 20,000 Gallons = 100 Lb Nitrogen / Acre): 6,750 pounds per acre

Small amounts of nutrients can double yields. Prefer biological fertilizers whenever practical.

RICE PREFERS DEEP SOILS

4 Inches of Topsoil over Granite: 1,338 pounds per acre

8 Inches of Topsoil over Granite: 1,734 pounds per acre

12 Inches of Topsoil over Granite: 2,223 pounds per acre

18-Inch Raised Bed: 3,446 pounds per acre

24-Inch Raised Bed: 4,580 pounds per acre

36-Inch Terrace: 4,965 pounds per acre

Crop yield is directly related to soil volume. More roots = more water and nutrients = bigger harvests. Manage fields to increase soil depth and eliminate compaction. Rule-of-Thumb: 5% yield loss for every 1-inch decrease in topsoil depth. 2.25% yield loss for every 1-inch decrease in subsoil depth. This rule applies to most seed crops.

SEED INOCULATION RAISES GRAIN YIELDS

Pre-Sprouted Upland Rice without Beneficial Microbes: 2,622 pounds per acre

Upland Rice Seed Soaked 24 Hours in Fresh Cow Manure Tea (1 dung : 1 water by weight): 3,361 pounds per acre. Use FRESH manure only. Do not use dried or composted dung.

Upland Rice Seed Soaked 24 Hours in Compost Tea (1 compost : 1 water by weight): 3,638 pounds per acre. Use only low temperature, aerobic, fungal dominant compost.

Rice grows better with symbiotic fungi and bacteria. Fungi provide water and minerals to rice. Bacteria fix nitrogen. Active soil biology replaces synthetic chemicals.

SOIL AERATION INCREASES RICE YIELD

16 Inches Topsoil: 2,809 pounds per acre

Subsoil Tillage 16 Inches Deep (0.75-inch wide slit every foot): 3,711 pounds per acre

16 Inches Potting Soil (1 topsoil + 1 coarse sand + 1 peat = 3 parts by volume): 4,261 pounds per acre

16 Inches Topsoil over 4-Inch Diameter Forced Air Ducts Every 2 Feet Apart (220 cubic feet per minute): 5,369 pounds per acre

16 Inches Composted Hardwood Bark: 6,546 pounds per acre

For highest yields manage fields to increase soil porosity. Healthy soils need to breathe. Roots need air to absorb water and nutrients. More oxygen = bigger harvests.

HISTORICAL NOTE: Yield data come from numerous unrelated experiments conducted at many diverse sites over 5 decades, 1930 to 1980. Results are not definitive (absolute) but rather suggestive. The trends are more important than the numbers. For example: Flooded rice generally yields less than sheet irrigated rice (alternate wetting and drying) which usually produces lower yields than sprinkler irrigated rice. These results typically hold true regardless of variety, cultural methods, or environmental conditions. Experimental data vary but the underlying principle does not: Soil aeration increases grain yields. More oxygen = more rice.

This article was written before development of the modern System of Intensive Rice Cultivation. Consequently, the importance of transplanting 10 to 12-day old seedlings was unknown to the Author. 2-leaf transplants develop many tillers which greatly increase rice yields. Equidistant spacing of young transplants is the foundation of intensive rice agronomy.

DEDICATION: This article is dedicated to Father Henri de Laulanie de Sainte-Croix, S.J., who taught me that humility precedes learning. This is not an easy lesson to master. Friar Laulanie (1920 – 1995) was the inventor of intensive rice cultivation = Systeme de Riziculture Intensive (SRI). I had the privilege of working with Friar Laulanie while he developed his new rice agronomy. My interest was in mechanized plantation agriculture while Father Laulanie was the champion of small field subsistence farmers. Consequently, we often approached problems from entirely different directions. I miss our lively correspondence and, especially, our friendly debates, most of which I lost. There is nothing quite like the experience of being steam rolled by the relentless logic of a Jesuit mind.

RELATED PUBLICATIONS: Chemical to Organic Rice Conversion Trials, Trino, Italy 2014 – 2019; Garden Rice Trials, Paia, Hawaii 1924 – 2020; Intensive Rice Culture Primer; Paddy Rice Agronomy Trials, Trino, Italy 1853 – 1910; Ratoon Rice Trials, Paia, Hawaii 1877 – 1924; Rice and Gram Polyculture, Pondicherry, India 1763 – 1865; Rice Polder Trial, Butler, Pennsylvania 1972; Rice Rotation Trial, Puerto Limon, Costa Rica 1950 – 1973; Termite Mound Effects on Upland Rice Yields, Koh Kong, Cambodia 1955.

OTHER ARTICLES OF INTEREST: Wheat Agronomy Trials 2016 – 2020; Red Fife Winter Wheat Trials 1990 – 2009; Stomp Seeded Winter Barley Trials 2008 – 2017; Yield of Small Grains Surface Seeded into Standing Dutch White Clover; Maize and Kidney Bean Polyculture; No-Till Nankeen Cotton in Mulch-In-Place Palmer Amaranth; Growth Stimulation of Pea Nodules by Companion Oats; Oat, Pea, and Turnip Polyculture Trial; Hand Cultivated Maize versus Mexican Sunflower Mulch-In-Place; Upland versus Wadi Barley Cultivation in Morocco; Yield of Forest Rye Grown on Quarry Sand Terraces; Maize Polyculture Trial 2007 – 2016.

WOULD YOU LIKE TO KNOW MORE? For more information on biological agriculture and intensive grain farming please visit: http://www.worldagriculturesolutions.com — or — mail your questions to: Eric Koperek, Editor, World Agriculture Solutions, 413 Cedar Drive, Moon Township, Pennsylvania 15108 United States of America — or — send an e-mail to: worldagriculturesolutions@gmail.com.

Cornell University hosts a comprehensive SRI website at: http://www.sririce.org. E-Mail Address: sririce@cornell.edu.

The original SRI papers by Friar Laulanie are available both online and in the scientific journal Tropicultura: Technical Presentation of the System of Rice Intensification, Based on Katayama’s Tillering Model. Henri de Laulanie. 1993 Tropicultura 13 : 1. Intensive Rice Farming in Madagascar. Henri de Laulanie. 2011 Tropicultura 29 : 3 (183 – 198).

For more information on French Intensive Gardening read this classic work: Manuel Pratique de la Culture Maraichere de Paris. J.G. Moreau. 1845 Alex Richards, Paris. Reprinted in 2010 by Nabu Press. International Standard Book Number (ISBN): 978 114 387 662 2.

ABOUT THE AUTHOR: Mr. Koperek is a plant breeder who farms in Pennsylvania during Summer and Florida over Winter. (Growing 2 generations yearly speeds development of new crop varieties).

INDEX TERMS: 5-10-5 (chemical fertilizer); Aerobic Compost; African Rice; Alternate Wetting and Drying (irrigation); Asian Rice; Beneficial Bacteria; Beneficial Microbes; Burlap Mulch; California Rice Farming; Compost Tea; Composted Hardwood Bark; Cover Crops; Cow Manure Compost; Direct Seeding; Drip Irrigation; Equidistant Spacing; Flame Weeding; Flood Irrigation; French Intensive Gardening; Fungal Dominant Compost; Hand Weeding; Henri de Laulanie (agronomist); Hills (for planting); Indian Rice; Intensive Rice Agronomy; Intensive Rice Culture; Intensive Rice Farming; Intensive Rice Growing; Japanese Rice; Lowland Rice; Low Temperature Compost; Manure Cubes; Manure Lagoon Water; Manure Pots; Manure Tea; Monsoon Rice; Mucuna utilis; Mulching; Mulch-In-Place; Nitrogen Fixing Bacteria; Organic Fertilizers; Organic Rice Farming; Oriental Rice; Oryza glaberrima; Oryza sativa indica; Oryza sativa japonica; Paddy Rice Cultivation; Phosphorus (fertilizer); Plant Density; Pre-Sprouting Seeds; Rice Tillering; Ridge and Furrow Irrigation; Seed Inoculation; Seed Priming; Sheet Irrigation; Sistema Intensivo de Cultivo Arrocero; Soil Aeration; Soil Depth; Soil Porosity; Sprinkler Irrigation; Subsoil Tillage; Symbiotic Fungi; System of Rice Intensification; Systeme de Riziculture Intensive; Transplanting; Upland Rice; Velvet Bean; Weed Control; West African Rice.

ORIGINAL PUBLICATION DATE: November 1981, Lime House, Dominica

UPDATE: July 2023, Homestead, Florida

PELLETED SEED PRIMER

What Is It?     Pelleted seeds are enclosed in a layer of fine clay to protect them from insects and birds.  Beneficial micro-organisms, fertilizer, and seed protectants can also be included in the clay pellet as needed.  Pelleted seeds are ideal for no-till agriculture where crops are broadcast seeded into standing vegetation.  Pelleted seeds are also easier to drill or sow by hand because each pellet is large enough to space accurately.

How To Do It:     Use 1 part seeds + 7 parts finely powdered clay = 8 total parts by volume.  (12.5% seeds + 87.5% powdered clay = 100% by volume).  Any kind of sticky clay will work or use dry, powdered clay purchased in 50-pound bags from a pottery supplier.

If preparing clay from scratch, remove and save topsoil then dig clay from subsoil layers.  Wash or sift clay through window screening to remove impurities.  Dry clay then grind before use.  Ideal pelleting clay should be pure and dust-like, similar to wheat flour.

Place seeds in mixing barrel of 5 gallon = 20 liters or larger capacity.  Barrel should not have any paddles, beaters, blades, or other protrusions = inside surface must be smooth and free of all obstructions.  Rotate barrel by hand or machine (like a cement mixer).

Slowly, add fine water mist until seeds are barely damp.

Add dry clay alternately with water mist while revolving barrel continuously.

When pellets are twice the diameter of the seeds continue turning the barrel for 3 to 4 minutes only, just until pellets look glossy.

DO NOT OVER-ROTATE BARREL OR SEED PELLETS WILL STICK TOGETHER!

Gently pour seed pellets onto screens to dry in a well-ventilated place.

Store air dried seed pellets in waterproof containers in a dry place until needed.

Biological No-Till Small Grains:     Broadcast seed pellets by hand or use a rotary spreader.  Sow pellets directly into standing vegetation so that soil remains undisturbed.  (Broken soil stimulates weed germination).

Alternatively, drill pellets using a no-till seeder equipped with sharp coulters and chisel tines or cultivator blades to cut narrow slits in the soil.  (The goal is minimal disturbance of soil surface and plant cover).

Wait patiently until rains come and seeds germinate.

Do not use chemical fertilizers, herbicides, pesticides, or fungicides on fields.  Do not weed by hand nor cultivate by machine.  Control weeds by sowing grain with Dutch White Clover (Trifolium repens) if necessary.  Irrigation is optional, but not essential.

2 to 4 weeks before harvest sow pelletized seed of second crop into standing vegetation of first crop.  This is necessary to control weeds.

When grain is threshed, return all straw and chaff to the field and spread randomly so following crop can grow up through the mulch.

Continue rotating grain crops taking special care to over-seed following crop 2 to 4 weeks before harvesting preceding crop.

This technique works best in climates warm enough to grow 2 grain crops yearly:  A winter grain crop and a summer grain crop.  In cooler climates substitute a short season crop like Buckwheat (Fagopyrum esculentum) or Turnips (Brassica rapa subspecies rapa)  for the summer grain crop. 

TO CONTROL WEEDS IT IS ESSENTIAL TO KEEP SOIL COVERED WITH GROWING PLANTS AT ALL TIMES = 365 DAYS YEARLY.  USE CLOVERS OR OTHER COVER CROPS TO FILL UP EVERY DAY OF THE GROWING SEASON.  SOIL SHOULD NEVER BE LEFT BARE, NOT EVEN FOR A SINGLE DAY.

Subsistence Grain Farming:     Drill or broadcast seed into standing hay, pasture, range, stubble, or weeds.  For best results sow when grain naturally drops its seeds (most commonly in the Fall = dry or dormant season).  Use pelleted seed if broadcast sowing on soil surface.  Use naked or pelleted seed if planting by drill.  Wait for rain and hope for the best.  In years with good rainfall, subsistence yields will be 60% to 70% of conventionally planted grain crops.  In dry years the crop may not be worth harvesting for grain (but will make forage for cattle).  Even is no crop is harvested, surface vegetation protects land from erosion while roots improve soil structure and fertility.  Subsistence farming makes economic sense because production costs are minimal (seed + 1 pass across the field).  Low costs mean farmers reduce financial risk and gain higher returns on investment.

Seed Bombing:     Seed bombing is a technique used to re-vegetate degraded lands, or to surreptitiously plant vacant lots or other properties not owned by the cultivator = guerrilla gardening.  Seeds are mixed in a stiff clay paste, hand formed into marble to walnut-sized balls, then air dried and stored until planting.  The clay balls are randomly broadcast = bombed over the landscape (or discretely dropped where soil and micro-climate appear most favorable).  A planting density of 10 balls per square meter or yard is typically used for land reclamation projects.

How To Make Seed Balls:     Seed balls are much larger than pellets.  Typical seed balls are the size of large marbles or ball bearings and contain approximately 1/2 fluid ounce = 1 Tablespoon = 3 teaspoons = 15 milliliters = 15 cubic centimeters of clay.  Very large seed balls can be double this size = 1/4 cup or approximately the volume of a walnut in its shell.  Use the following recipe to make seed balls for land restoration projects:

1 part seeds + 3 parts finely sifted compost + 5 parts clay + 1 to 2 parts water = 9 to 10 total parts by volume.  Compost is necessary to provide symbiotic fungi essential for root growth.   Mix compost with 10% organic seed protectant (powdered chili pepper) if desired.  1 part organic fertilizer (phosphate rock or bone meal) can be substituted for an equal volume of clay powder to help establish seedlings in phosphorous deficient soils.  Other additives might include nitrogen-fixing bacteria or fritted trace elements, as needed.

Combine in order seeds, compost, clay, and water.  Mix gently until paste has uniform consistency like bread dough.  Portion paste with cookie scoops then shape balls by rolling clay between palms of hands.  Place tightly formed (crack free) balls in a single layer on screens to air dry in the sun.  Store bone-dry seed balls in a moisture-free, well ventilated place until ready to plant.

Carefully encase large seeds like maize, sunflower, peas, beans, lentils, pumpkins, squash, gourds, cucumbers, and melons in individual seed balls.  Mix all small seeded crops (including grasses, clovers, weeds, and wildflowers) randomly with the clay paste.

For land restoration projects choose seed mixtures carefully:  Best results are obtained by combining seeds of native plants that normally grow together in the wild.  It is good practice to include a wide range of species:  Cool and warm season plants, annuals and perennials, grasses, wildflowers, broadleaf plants, weeds, clovers and other legumes.  If budgets are tight or seed too expensive, obtain weed seeds from local grain elevators.  Elevator screenings are free or cheap and contain large amounts of weed seed.  Weeds are ideal species for colonizing bare soils.  Weeds heal the earth allowing less hardy species to become established.

Would You Like To Know More?     Please contact the Author directly if you have any questions or need additional information about pelleted seeds for agriculture and land reclamation.

Please visit:  http://www.worldagriculturesolutions.com  — or —  send your questions to:  Agriculture Solutions, 413 Cedar Drive, Moon Township, Pennsylvania, 15108 United Sates of America  — or —  send an e-mail to:  Eric Koperek = worldagriculturesolutions@gmail.com

About The Author:     Mr. Koperek is a plant breeder who farms in Pennsylvania during the summer and in Florida during the winter.  (Growing two generations yearly speeds development of new crop varieties).