Biological Control of Citrus Greening

Summary: This 23-year experiment looks at how orange trees grow in a multiple-species cover crop of 29 native weeds and 60 companion plants. A small grove of 27 trees is followed from crop year 2000 (before citrus greening) through 2022. (Citrus greening appeared in Florida around 2005). Live tree number dropped from 27 to 24. Average early season fruit Brix dropped from 14.6 to 11.5%. Mean late season Brix declined from 16.0 to 12.9% Average fruits per tree decreased from 200 to 140. Average market fruit weight dropped from 7.33 to 4.5 ounces. Mixed species cover crops are not a cure-all for citrus greening, but they enable orange trees to live with the disease and produce fruit of acceptable quality.

Experimental Location: Venus, Highlands County, Florida, United States of America. Zip Code: 33960. 27.0670 degrees North Latitude. 81.3571 degrees West Longitude.

Climate: Venus has a humid subtropical climate with a distinct monsoon season. The wet months are June through September (31 inches of rain). The dry months are November through January (6 inches of rain). Elevation = 82 feet above sea level. Average Annual Temperature = 72.5 degrees Fahrenheit. The warmest month is July (High = 92 degrees Fahrenheit). The coldest month is January (Low = 48 degrees Fahrenheit). Average Annual Rainfall = 52 inches. Average First Frost (36 degrees Fahrenheit) = 21 December. Average Last Frost in Spring (36 degrees Fahrenheit) = 20 February. Frost Free Growing Season = 317 days = approximately 10 months. Note: Venus is the warmest area in Florida. Frosts are rare and unpredictable.

Experimental Design: A small grove of 27 trees is monitored over 23 years for longevity (age), fruit quality (percent sugar content), and yield (fruit number and weight). Sugar content in degrees Brix is measured with a refractometer by sampling juice of 10 early season and 10 late season fruits from each tree. (1 degree Brix = 1 percent sugar content by weight = 1.5 ounces of sugar in 1 gallon of pure water). 23 years of data ensure reliable averages for comparison with commercial orchards.

Soil Type: Sandy Gravel. South Florida soils are deficient in most primary nutrients and trace elements. The best management practice for these problem soils is to keep fields “green” all year long. Growing plants add organic matter to the soil and live roots feed sugar to beneficial micro-organisms.

Rotation: Experimental orchard was planted in 1970 on pasture seeded with multiple species forages. It is good practice to plant citrus on fresh ground = hay fields or meadows 7 or 8 years old. Long rotations cure “orchard syndrome” = buildup of nematodes and diseases that make trees sick and cut yields by 30 to 50 percent.

Variety: Citrus sinensis cultivated variety “Cyprus”. This is a “vintage” variety imported from the island of Cyprus in 1880. Cyprus oranges are large and sweet, about the size of a grapefruit = 13 to 18 ounces and 14 to 20 degrees Brix. Cyprus oranges grown in Florida are smaller (7 to 14 ounces) and contain less sugar (14 to 16 degrees Brix for late season fruit).

Spacing: Experimental trees are plated 30 feet equidistantly = 48 trees per acre to promote maximum airflow through the orchard and optimum light penetration into the canopy. For comparison, most modern Florida orchards have 70 trees per acre spaced 25 feet apart.

Cultivation: Experimental orchard was not plowed, disked, harrowed, or cultivated. Weeds and cover crops were allowed to grow without interference. Orchard was mowed once yearly just before harvest.

Agronomy Note: Conventional tillage of South Florida soils is a pointless waste of effort. Plowing sandy gravels merely stirs up more rocks. Cultivation destroys the network of beneficial fungi upon which orange trees depend for water and minerals.

Fertilizer: No nitrogen fertilizers (chemical or organic) were used in this experiment. Legumes and independent soil bacteria supplied nitrogen for orange trees. 1 ton each of clay, phosphate rock, and greensand were broadcast yearly over every acre. 500 pounds of fritted trace elements were applied to each acre every 5th year.

Agronomy Notes: Small amounts of clay, about 3/4 ounce per square foot yearly, help sandy soils hold water and nutrients for better plant growth. Only modest amounts of clay are needed to “strengthen” sandy fields, never more than 10 percent by weight in the top 6 inches of soil. Adding excess clay reduces porosity and makes soil too sticky.

Micro-nutrients are mixed with molten soft glass then crushed into coarse sand called “frit”. Minerals are released slowly as the glass dissolves in the soil.

Herbicide: No herbicides were used in this experiment. Weeds and cover crops were allowed to grow with “wild abandon” to encourage maximum populations of beneficial insects. The trees did not seem to mind competition from their companions even when occasional vines climbed into the branches. Errant vines were removed by hand and the orchard mowed immediately before harvest.

Fungicide: No fungicides were used in this trial. Widely spaced trees grown in weeds are remarkably healthy even when infected by citrus greening.

Insecticide: No insecticides (synthetic or natural) have ever been used in this orchard. One of the significant advantages of growing citrus with many companion plants is that trees do not require spraying. Large populations of native predators and parasites keep pests below economic threshold levels.

Irrigation: Experimental trees are irrigated by overhead sprinklers installed when the orchard was planted in 1970. Trees receive 2 inches of water weekly, as needed.

Harvest: Experimental trees were harvested by hand. All attempts to use robots have failed miserably. Machine intelligence and artificial vision systems cannot handle random limbs and branches. No robot has ever picked more than 60% of available fruit even when citrus trees were espaliered and trained on wires. Machine harvest of oranges remains a faint hope far in the future.

60-Species Cover Crop with 48% Legumes:

29 legumes (48.33%) + 15 forbs (25%) + 11 grasses (18.33%) + 5 root crops (8.33%) = 60 total species (99.99%).

We plant a little bit of whatever cover crop seeds are available. Our goal is broad genetic diversity. Wide variety supports the maximum number of beneficial insects and micro-organisms. Admittedly, this is “black box” science. We do not know how the biology works but orange trees somehow manage to survive and ripen good fruit. Cover crops are not a panacea for citrus greening but sowing seeds is far less costly than alternative treatments.

Alfalfa = Lucerne = Medicago sativa

Birdsfoot Trefoil = Lotus corniculatus

Black Medic = Medicago lupulina

Buckwheat = Fagopyrum esculentum

Butterfly Pea = Centrosema rotundifolium

Canary Seed = Phalaris canariensis

Caraway = Carum carvi

Centro = Centrosema pubescens = Centrosema molle

Clitoria = Clitoria ternatea

Cowpea = Vigna unguiculata

Crimson Clover = Trifolium incarnatum

Deer Vetch = Aeschynomene americana

Dill = Anethum graveolens

Dutch White Clover = Trifolium repens

Egyptian Clover = Trifolium alexandrinum

Fenugreek = Trigonella foenum-graecum

Flax Seed = Linum usitatissimum

Forage Kale = Brassica oleracea sabellica

Forage Maize = Zea mays

Forage Pea = Pisum sativum

Forage Sorghum = Sorghum bicolor x Sorghum sudanense

Forage Soybean = Glycine max = Glycine soja

Forage Turnip = Brassica campestris rapa

Frost Bean = Vicia faba minor

Garden Radish = Raphanus sativus

Grain Sorghum = Milo = Sorghum bicolor

Hairy Indigo = Indigofera hirsuta

Jack Bean = Canavalia ensiformis

Lupine (blue) = Lupinus polyphyllus

Mexican Sunflower = Tithonia rotundifolia

Mung Bean = Green Gram = Vigna radiata

Oat = Avena sativa

Okra = Abelmoschus esculentus

Partridge Pea = Cassia rotundifolia = Chamaecrista species

Pearl Millet = Pennisetum glaucum

Phacelia = Phacelia tanacetifolia

Pigeon Pea = Cajanus cajan

Plantain = Plantago major

Rape Seed = Rape Seed = Brassica napus

Red Clover = Trifolium pratense

Red Lentil = Lens culinaris

Rice (African) = Oryza glaberrima

Rice (Indian) = Oryza sativa indica

Rice (Oriental) = Oryza sativa japonica

Rutabaga = Brassica napus napobrassica

Safflower = Carthamus tinctorius

Scarlet Runner Bean = Phaseolus coccineus

Sesame = Sesamum indicum

Sesbania = Sesbania exaltata

Stock Beet = Magelwurzel = Beta vulgaris

Sugar Beet = Beta vulgaris saccharum

Sunflower = Helianthus annuus

Sunn Hemp = Crotalaria juncea

Sweet Clover = Meliotus officinalis

Sweet Sorghum = Sorghum bicolor saccharum

Velvet Bean = Mucuna pruriens

Winter Barley = Hordeum vulgare

Winter Rye = Secale cereale

Winter Vetch = Vicia villosa

Winter Wheat = Triticum aestivum

Agronomy Notes: Cover crop seeds may be mixed with corn meal, weed seed meal, or similar carrier for more even distribution. Use a no-till drill and sow not less than 20 pounds per acre in 2-inch-deep furrows spaced 7 inches apart. Alternatively, mow field first, broadcast seed, then make 1 pass only with a rear-tine rototiller set 2 inches deep. Cover crops may also be surface seeded = Sow-and-Mow: Broadcast seed into standing weeds 5 to 6 feet tall then immediately mow to cover and protect seed. Prompt and frequent irrigation is essential to speed germination of surface sown seeds.

Sesbania exaltata is a useless weed to many South Florida growers. All varieties of sesbania are legumes that fix 130 pounds of nitrogen per acre every 60 days when grown in monocultures. The difference between a “weed” and a useful plant is often careful management.

Common Agricultural Weeds in Highland County:

Following is a list of 28 weed species most common on South Florida farms. These are only the most bothersome weeds. There are many other species in fields around Venus. Subtropical warmth encourages rapid plant growth so weed competition is constant on agricultural fields. The only biologically effective way to manage weeds is to keep ground covered with live crops year-round. Shade and intense competition prevent weeds from becoming established.

American Black Nightshade = Solanum americanum

Annual Ryegrass = Lolium multiflorum

Bristly Starbur = Acanthospermum hispidium

Bull Thistle = Cirsium vulgare

Cocklebur = Xanthium strumarium

Coffee Senna = Senna occidentalis

Crabgrass = Digitaria sanguinalis

Fall Panicum = Panicum dichotomiflorum

Florida Beggarweed = Desmodium tortuosum

Goosegrass = Eleusine indica

Hairy Nightshade = Solanum physalifolium

Johnsongrass = Sorghum halepense

Lambsquarters = Chenopodium album

Morning Glory = Ipomoea purpurea

Palmer Amaranth = Amaranthus palmeri

Pigweed = Amaranthus blitum

Purple Nutsedge = Cyperus rotundus

Purselane = Purslane = Portulaca oleracea

Ragweed = Ambrosia artemisifolia

Ragweed Parthenium = Parthenium hysterophorus

Redroot Pigweed = Amaranthus retroflexus

Sandbur = Cenchrus echinatus

Sickle Pod = Senna obtusifolia

Smooth Pigweed = Amaranthus hybridus

Spanish Needle = Bidens alba

Spiny Amaranth = Amaranthus spinosus

Texas Panicum = Urochloa texana

Yellow Nutsedge = Cyperus esculentus

Experimental Measurement: Harvested fruits were weighed on a digital platform scale accurate to 1/100th pound. All numbers are rounded down to the nearest 1/10th pound.

Summary of Experimental Results:

Effect of Citrus Tree Greening on Orange Tree Growth

Trees spaced 30 x 30 feet apart, planted in 1970. Cyperus Orange grafted on Trifoliate Orange rootstock. Irrigated orchard covered with native weeds and 60-species companion plant mix mowed only before harvest. 1 ton each of clay, phosphate rock, and greensand broadcast per acre yearly. 500 pounds per acre of fritted trace elements applied every 5 years.

Harvest Year 2000

Tree Number = 27

Early Season Fruit Brix = 14.1%

Late Season Fruity Brix = 16.0%

Fruits per Tree = 200

Market Fruit Weight = 7.3 oz

Yield per Tree = 91.2 lb

Note: Degrees Brix is a measure of “soluble solids” = sugar content. 1 degree Brix = 1 percent sugar.

Harvest Year 2022

Tree Number = 24

Early Season Fruit Brix = 11.5%

Late Season Fruit Brix = 12.9%

Fruits per Tree = 140

Market Fruit Weight = 4.5 oz

Yield per Tree = 39.3 lb

Commentary: 39 pounds of fruit per tree is nothing to cheer about unless the alternative is bulldozing an entire orchard. Growing orange trees in “weeds” has 3 distinct advantages:

(1) Companion plants help rejuvenate trees so they have productive lives exceeding 50 years. Most trees infected with citrus greening live only 15 years or less.

(2) Multiple species cover crops enable orange trees to ripen fruits with high sugar contents, 11.5 to 12.9 degrees Brix. These values compare favorably with oranges from California where citrus greening has not yet spread.

(3) Trees grown in weeds do not have economically significant insect problems. Experimental trees remain unsprayed after 54 years. Companion plants provide food, shelter, and alternate hosts for beneficial predators and parasites. The good bugs eat the bad bugs.

Little is known about the interaction between species in a cover crop mix. Even less is known about the interrelationships between myriad species of soil micro-organism and plant roots. What is known is that a lively trade exists between plants and symbiotic fungi. Roots provide sugar to fungi in exchange for water and minerals. Perhaps complex organic compounds are traded as well. Fungi make anti-biotics to protect themselves from bacteria. Citrus greening is a bacterial disease. Could anti-bacterial chemicals be responsible for keeping orange trees healthy?

Related Publications: Biological Agriculture in Temperate Climates; Crops Among the Weeds; Living Mulches for Weed Control; Managing Weeds as Cover Crops; The Twelve Apostles (multi-species cover crop); Trash Farming; Weed Seed Meal Fertilizer.

Would You Like to Know More? For more information on biological agriculture and multi-species cover crops please visit: http://www.worldagriculturesolutions.com — or — mail your questions to: Eric Koperek, Editor, World Agriculture Solutions, 413 Cedar Drive, Moon Township, Pennsylvania 15108 United States of America — or — send an e-mail to: worldagriculturesolutions@gmail.com.

About the Author: Mr. Koperek is a plant breeder who farms in Pennsylvania during summer and Florida over winter. (Growing 2 generations yearly speeds development of new crop varieties).

Index Terms: Biological Agriculture; Biological Insect Control; Candidatus liberibacter asiaticus (citrus greening bacteria); Companion Plants; Citrus Greening (disease); Cyprus Orange (Citrus sinensis cultivated variety Cyprus); Huanglongbing (citrus greening disease); Multiple Species Cover Crops; Orange Fruit Brix; Orchard Floor Management; Sweet Orange (Citrus sinensis); Trifoliate Orange Root Stock (Citrus trifoliata); Weeds (as cover crop).

Publication Date: June 2023, Homestead, Florida.

CROP ROTATION PRIMER

Problem:     Growing the same crop in the same field year after year weakens the soil and promotes harmful insects and diseases.

Solution:     Plant a different crop each year.  Alternating unrelated species allows soil to rest and breaks reproduction cycles of diseases and pests.

Example:     Rather than sowing Wheat — Wheat — Wheat, grow Red Clover — Potatoes — Wheat.

Rotation Science:     Each species roots at different depth and takes varying amounts of minerals.  Rotating crops gives soil time to replenish these nutrients.  Every variety has its own cast of villainous insects and debilitating diseases.  Alternating different plants each season starves harmful organisms by denying them hosts on which to feed.

How To Do It:     Following is a list of strict rotation rules.  Obey these instructions and your crops will thrive.  Ignore the rules and you will spend unpleasant sums for costly pesticides, nematicides, and fungicides.

Rule-Of-Thumb:     Never follow a crop with a similar or botanically related species.  Thus:

Rule:     Never follow a grain crop with a grain crop.  Examples:  Oats & Wheat.  Maize & Barley.  Note:  This rule applies to all true cereals = grass crops.

Rule:     Never follow a leaf crop with a leaf crop.  Examples:  Spinach & Lettuce.  Cabbage & Chard.

Corollary:     Never follow a broad leaf plant with a broad leaf plant if there is a better alternative.  Example:  Sunflower & Collards.  Sunflower & Millet is a better choice (broad leaf plant followed by a narrow leaf = grass plant).  This rule is not always easy to follow but keep it in mind especially if nematodes are a problem.  Grasses suppress most nematodes.

Good Practice:     Rotate nematode resistant crops where these parasites cause economic losses:  Asparagus, Arugula, Barley, Broccoli, Cabbage, Castor Bean, Collards, Cowpea, Crimson Clover, Grasses (Poaceae), Hairy Vetch (winter vetch), Jack Bean, Joint Vetch, Kale, Lupine, Maize (corn), Marigold (Tagetes species), Millet, Mustard Greens, Mustard Seed, Oats, Partridge Pea, Rapeseed (canola), Rice, Rye, Sesame, Showy Crotalaria, Sorghum, Sudan Grass, Sunn Hemp, Velvet Bean, Wheat.

Rule:     Never follow a root crop with a root crop.  Examples:  Carrots & Potatoes.  Onions & Sugar Beets.  Note:  All roots, tubers, corms, and bulbs are called “root crops”.

Rule:     Never follow a fruit crop with a fruit crop.  Examples:  Tomatoes & Peppers.  Watermelons & Gourds.  Cucumbers & Eggplants.

Rule:     Never follow a seed crop with a seed crop.  Examples:  Buckwheat & Sesame.  Caraway & Fennel.  Note:  “Seed Crops” include “pseudo-cereals” (Quinoa & Amaranth) and “Oil Seeds” (Safflower, Flax, Sunflower).

Rule:     Never follow a flower crop with a flower crop.  Examples:  Poppies & Zinnias.  Marigolds & Nasturtiums.

Rule:     Never follow a vine crop with a vine crop.  Examples:  Gourds & Pumpkins.  Cucumbers & Squash.  Note:  Some rotation rules overlap.  This repetition is deliberate.  Gourds, pumpkins, squash, and cucumbers are fruit crops, vine crops, and in the same botanical family = 3 reasons not to follow these crops in close rotation.

Rule:     Never follow crops sharing common diseases or insect pests.  Example:  Tomatoes & Watermelons are both susceptible to anthracnose.

Rule-Of-Thumb:     Highly aromatic plants = herbs “cleanse” the soil.  Examples:  Basil, Oregano, Sage, and Thyme.  This rule dates back to the Middle Ages and is especially useful for market gardens and other small spaces.  If you cannot think of a better rotation follow cash crops with herbs or strongly scented flowers like Marigolds.

Rule:     Alternate legumes with cash crops whenever practical.  Examples:  Red Clover & Sweet Corn.  Crimson Clover & Cabbage.  Frost Beans & Green Peppers.  Why buy costly synthetic fertilizer when you can grow nitrogen-fixing legumes?  Let nature pay your fertilizer bills!

Corollary:     Plant legumes with cash crops whenever practical.  Growing 2 or more species together is called polyculture.  Examples:  Pumpkins & Dutch White Clover.  Barley & Chickling Vetch.  Sweet Corn & Pinto Beans.  Cotton & Crimson Clover.  Potatoes & Frost Beans.  Seed multiple species in the same row, in alternate rows, or broadcast together.  For best results use short or non-climbing legumes that will not interfere with harvesting equipment.

Rule:     Use 7-year rotations whenever practical.  Example:  Flax — Sweet Clover — Wheat — Lentils — Rapeseed (canola) — Pinto Beans — Sunflower.  Long rotations are essential to control insects and disease organisms that live in the soil.

Rule:     Alternate cash crops with forage crops whenever practical.  Examples:  Safflower — Winter Rye & Winter Vetch & Forage Turnips.  Winter Barley & Austrian Winter Peas & Tillage Radish — Sunflower.  Forage Maize & Velvet Bean — fall Broccoli or other cabbage family crops.

Good Practice:     German farmers have a long history of planting “Landsberger Gemenge” = Hill Mixture = Mountain Mixture = Waste Land Mixture = multi-species forage crops sown on land unsuitable for plowing.  Typical mixes include 1 cereal or grass + 2 legumes + 1 cabbage family plant or root crop.  For example:  Winter Rye + Red Clover + Winter Vetch + Forage Kale or Turnips.  This combination of cereal, legume, forb, and root crops makes a balanced diet ideal for grazing animals.  Cattle gain 2.5 to 3.5 pounds daily when feeding on forage mixtures of 4 or 5 species.

Historical Note:     Farmers in the Middle Ages planted “The Twelve Apostles” = a mixed species forage crop with 4 grains + 4 legumes + 4 root or broad leaf crops.

Rule:     Practice sabbatical rotation whenever possible:  Let fields rest every seventh year.  Grow weeds or multiple species cover crops to restore soil structure and fertility.  Example:  Caraway Seed — Red Clover — Sunflower — Berseem Clover — Winter Rye — Soy Beans — Mixed Grass & Alfalfa Hay Crop.

Rule:     Grow crops in narrow strips rather than large fields.  Plant adjacent strips with unrelated species.  Adjust strip widths to fit planting and harvesting machinery.  For best results strips should not exceed 200 feet wide on flat land or 50 feet wide on hills or slopes.  Example:  4 rows of Sweet Corn — 4 rows of Snap Beans — 4 rows of Sunflower — 4 rows of Sweet Potatoes . . . .  Note how tall crops alternate with short crops.  This increases light penetration into the canopy and greatly reduces pest populations.

Rule:     Plant cash crops with companion plants whenever practical.  Use short cover crops that will not compete with taller cash crops.  Example:  Oats & Forage Peas & Turnips.  Harvest oats with a “stripper header” then graze peas & turnips.  Historical Note:  Farmers in the Middle Ages grew polycrops called The Holy Trinity = 1 cereal grain + 1 legume + 1 root crop.

Rule:     Include multiple species cover crops in farm rotations whenever practical.  Use multi-species cover crops just like legume cover crops.  Mixed species cover crops and legumes can be freely substituted in any crop rotation.  Growing multiple species cover crops is the best way to improve soil tilth and increase soil organic matter.

Good Practice:     Experience has shown that mixed species cover crops effectively control pests and diseases.  However, it is best to be cautious.  Thus, a corn and soybean farmer should not include either maize or soy in his cover crops.  This principle applies to all cash and cover crops.

Rule-Of-Thumb:     Mixtures of plants grow better than isolated species.  full synergistic effects require at least 8 cover crop species.  There is a certain minimum number of species that must be present before soil biology reaches maximum activity.  this “tipping point” appears to vary depending on location and plant varieties.  Some farmers include 30 species in their cover crop mixes.

Generic Cover Crop Mixture:     2 warm season grasses + 2 warm season legumes + 2 warm season broad leaf plants + 2 cool season grasses + 2 cool season legumes + 2 cool season broad leaf plants + 2 or more root crops = 14 or more species cover crop mix.  Broadcast not less than 20 pounds per acre or drill in 2-inch deep furrows spaced 7.5 inches apart.

Rule-Of-Thumb:     Include 50% legumes by weight in mixed species cover crops to provide sufficient nitrogen for following cash crop.

Science Note:     Cover crops containing many species can fix substantial amounts of nitrogen even if few or no legumes are present.  Agronomists speculate that this nitrogen comes from free-living soil bacteria.  Also, symbiotic bacteria fix more nitrogen when mixtures of legumes are grown with plants that do not fix nitrogen.  Maximum synergistic effects are noted in cover crops with 20 or more species.  Ideal number of species is not known.

Rule:     Reserve 5% to 10% of farmland for native weeds.  Grow weeds around fields and in narrow strips between cash crops.  Sow weeds in vineyards and orchards.  Mow weeds only when necessary = at harvest.  Example:  Obtain weed seeds = screenings from local grain elevators.  Sow wherever soil is bare.  Bale weedy fields.  Spread bales of “wildflower hay” wherever soils are weak or pests prolific.  Native weeds are essential to provide food, shelter, and alternate hosts for beneficial insects.  Biological pest control is not effective without native wees growing in close proximity to crops needing protection.

Rule:     Tolerate weeds in cash crops provided density does not exceed 2,500 to 5,000 weeds per acre = approximately 1 weed every 3 or 4 feet equidistantly.  Thin weeds as necessary to protect cash crops from excess competition.  Weeds provide food, shelter, and alternate hosts for predatory and parasitical insects.  Example:  Let weeds grow inside and around tomato fields.  Result:  Save $400 per acre on insecticide costs.

Rule:     For biological pest control, plant cash crops adjacent to native weeds and other plants with small flowers.  More weeds = more flowers = fewer pests = less crop damage.  Rule-Of-Thumb:  If you have a pest problem it means you do not have enough flowers.  Examples:  Plant wildflowers in your vineyard or buckwheat, hairy vetch, and turnips in your orchard.

Rule:     Reserve 5% to 10% of farmland for hedgerows, windbreaks, and wood lots.  For high biodiversity plant not less than 40 species per acre or linear mile.  for best results choose economic species that produce nuts, fruits, berries or other cash crops.  Rule-Of-Thumb:  Everything on a farm should produce income.  Example:  Wildflowers can be harvested for seed or rented to local bee keepers.

Rule:     Break any rule rather than do something stupid.  Rotation rules are based on centuries of practical experience.  Thus, think deeply before trying anything risky.  For example:  Crop rotation can be difficult or inconvenient in small spaces or market gardens.  Solution:  Compromise where needed and apply lots of compost = at least 1 inch deep = 1 pound per square foot.  Soils of high biological activity have strong resistance to pests and diseases.  Rule-Of-Thumb:  Plants with Brix readings above 12% dissolved solids are generally immune to most insects and pathogens.  High Brix levels are directly related to soil organic matter content.  Translation:  More compost = healthier plants = crop rotation is not always necessary all of the time.

Plant Families:     Following is a list of the top 10 botanical families most important to farmers and gardeners.  Use listed species to plan effective crop rotations.

Beet Family = “Chenopods” = Chenopodiaceae:     Amaranth, Beet, Lamb’s Quarters, Mangel-Wurzel (stock beet = forage beet), Spinach, Sugar Beet, Swiss Chard, Quinoa, Redroot Pigweed.

Cabbage Family = “Crucifers” = “Brassicas” = Cruciferae = Brassicaceae:     Arugula, Brussels Sprouts, Broccoli, Cabbage, Chinese Cabbage (bok choy), Cauliflower, Collards, Garden Cress, Horseradish, Kale, Kohlrabi, Mustard (greens), Mustard (seed), Nasturtiums, Radish, Rapeseed (canola), Rapini, Rutabaga, Turnip, Water Cress, Woad (blue dye plant).

Agronomy Note:  Brassicas and Chenopods are good pioneer plants because they do not need mycorrhizal fungi in order to thrive.  Caution:  Do not plant Brassicas or Chenopods if you are trying to encourage beneficial fungi.  Brassicas and Chenopods will not feed mycorrhizal fungi.

Carrot Family = Apiaceae = Umbelliferae:     All plants in the Carrot Family have umbels = umbrella-like flowers composed of hundreds of tiny florets.  Small flowers are ideal “bee forage”:  Angelica, Anise, Caraway, Carrot, Celeriac, Celery, Chervil, Cilantro, Coriander, Cumin, Dill, Fennel, Lovage, Parsley, Parsnip, Wild Carrot (Queen Anne’s Lace).

Cucumber Family = “Cucurbits” = Cucurbitaceae:     Cantaloupe (melon), Cucumber, Cushaw (squash), Gourd, Honeydew (melon), Luffa (sponge), Muskmelon, Pumpkin, Squash (summer, winter, & spaghetti), Watermelon, Zucchini.

Daisy Family = Aster Family = Asteraceae = Compositae:     Artichoke, Calendula, Chamomile, Chicory, dandelion, Endive, Escarole, Everlasting (helichrysum), Lettuce, Marigold, Raddichio, Sunflower, Tansy, Tarragon, Wormwood, Yarrow.

Grain Family = Cereal Family = Grass Family = Gramineae = Poaceae:     Barley, Corn (maize), Durum (wheat) = Semolina = Kamut, Einkorn (wheat), Emmer (wheat), Fonio, Millet, Oat, Rice, Rye, Sorghum, Spelt (wheat), Teff, Triticale (rye x wheat hybrid), Wheat, Wild Rice.  Pseudo-Cereals are not grass plants but are grown and eaten like true grains:  Amaranth, buckwheat, Chia, and Quinoa.

Legume Family = Fabaceae = Leguminosae:     Any plant that has seeds in pods is called a legume.  All legumes fix nitrogen and can be grown as “green manure crops”:     Alfalfa (lucerne), Beans, Carob Tree, Chickpeas (garbanzo beans), Clovers, Cowpea, Castor Bean, Fenugreek, Hairy Indigo, honey Locust Tree, Jack Bean, Lentils, Lespedeza, Lupine, Partridge Pea, Peas, showy Crotalaria, Sunn Hemp, Vetches (tares).  Legumes grown for dry, edible seeds are called “pulses” or “pulse crops”.

Mint Family = Lamiaceae = Labiatae:     Basil, Bee Balm, Bergamot, Calamint, Catnip, Hyssop, Lavender, Lemon Balm, Marjoram, Mint, Oregano, Pachouli, Rosemary, Sage, Savory, Thyme.

Onion Family = Lily Family = “Alliums” = Alliaceae = Liliaceae:     Asparagus, Chives, Garlic, Hyacinth, Leeks, Lilies, Onions, Ramps, Scallions, Shallots.

Tomato Family = Solanaceae:     Eggplant, Peppers, Petunias, Potatoes, Tobacco, Tomatoes, Tomatillos.

Related Publications:     Clifton Park System; Biblical Agronomy; The Twelve Apostles; Biological Agriculture in Temperate Climates; Polyculture Primer; Strip Cropping Primer; Worm Farming; Managing Weeds as Cover Crops; Earthworm Primer; Planting Maize with Living Mulches; Living Mulches for Weed Control; Crops Among the Weeds; The Edge Effect; Organic Herbicides; Forage Maize for Soil Improvement; Coppicing Primer; Forage Radish Primer; Weed Seed Meal Fertilizer; Intensive Rice Culture Primer; Trash Farming; Pelleted Seed Primer; Upside Down Potatoes; Maize Polyculture Trial 2007 – 2016; No-Till Hungarian Stock Squash; and the Rototiller Primer.

Would You Like To Know More?     For more information on crop rotation and Biological Agriculture please visit:  http://www.worldagriculturesolutions.com  — or —  send your questions to:  Eric Koperek, Editor, World Agriculture Solutions, 413 Cedar Drive, Moon Township, Pennsylvania, 15108 USA.

About The Author:     Mr. Koperek is a plant breeder who farms in Pennsylvania during summer and Florida over winter.  (Growing 2 generations yearly speeds development of new crop varieties).

Index Terms:     Biological Pest Control; Brix Levels (in crops); Companion Planting; Compost; Cover Crops; Crop Rotation; Holy Trinity (grain + legume + root crop polyculture); Landsberger Gemenge (mixed species forage crop); Mixed Species cover Crops; Multi-Species Cover Crops; Multiple Species Cover Crops; Polycrop; Polyculture; Sabbatical Rotation (fallow fields every 7th year); Strip Cropping; Stripper Header; Twelve Apostles (12 species forage crop mix); Weed Management; Wildflower Hay; and Wildflowers.

THE TWELVE APOSTLES

What Is It?     “A multi-species cover crop containing 12 varieties often 4 grains, 4 legumes, and 4 root crops”.

12 Apostle mixes are frequently planted by farmers practicing “Biblical Agronomy”.

For example:  Oat, pea, turnip, rye, winter vetch, mangel-wurzel (stock beet), wheat, clover, forage radish, barley, frost bean (fava bean), and rutabaga.

Other possible species include:  Millet, sorghum, buckwheat, maize, teff, sunflower, lentil, lupine, runner bean, sunn hemp, soy bean, flax, rapeseed, safflower, kale, and many other varieties.  Choose what grows well on your farm.

“Melange:  A mixture of grains, legumes, and root crops grown to feed animals and improve soils”.

All melanges contain at least 3 components:  1 grain + 1 legume + 1 root crop = “Holy Trinity”.

“We sowed the Holy Trinity.  Father Michael blessed the crop and our cattle thrived”.

For example:  Thomas Jefferson sowed buckwheat, winter vetch, and turnips to cure “tired soils”.

There is nothing magical about the number 12.  Melanges often contained fewer species.  Farmers blended odds and ends from their granaries or whatever they could buy cheaply.

Growing several species together (polyculture) is not a new idea.  The practice dates to Roman times.  Middle Age farmers called mixed plants “melanges”.  Today, modern agronomists call them “multi-species cover crops”.

Call it what you will, but “bio-diversity” (many species) is a key principle of Biological Agriculture.  Life breeds life.  Each additional species creates more food and shelter for myriad lifeforms.  Grow multi-species cover crops and soon your soil will teem with billions of critters.  More critters = faster nutrient cycling = higher yields.

“Feed the critters and the critters will feed your crops”.

I have not purchased fertilizer (chemical or organic) in 19 years.  Truly, there is power in numbers.  More species means more money in my pocket.

Try this on your farm:  Keep your ground covered with growing plants year-round.  Never plant a crop by itself.  Always plant mixed species.  Copy nature in your fields.  You will be glad you did.

“Roots in the ground all year round”.

Agronomy Notes:

If you do not have experience with polycultures, try something simple.  Winter grains and Dutch White Clover (Trifolium repens) can be planted together at the same time.  (Broadcast clover at 12 pounds per acre).  Clover suppresses weeds and provides nitrogen to the cereal crop.  When the grain is harvested clover covers the field.  The following season mow first then seed or transplant into clover living mulch using no-till equipment.

Different sized seeds can be mixed in the same seed box and drilled into a common furrow.  Big seeds like maize, sunflower and peas break through the soil so little seeds like clover and turnips germinate easily.  Furrows spaced 7.5 inches apart are ideal for most multi-species cover crops.

If desired, seeds can be mixed with cornmeal or sawdust to provide more volume for even distribution.

Small seeds like wheat, vetch and sugar beet can be surface seeded.  For best results use pelleted seed.  Broadcast into standing vegetation then immediately flatten plants with a roller-crimper or cut with a sickle-bar mower.  Surface mulch covers and protects germinating seedlings.

Large seeds like maize, sunflower and beans are best planted underground with no-till equipment.  Surface sow large seeds only with monsoon rains or daily irrigation.

When sowing grains mix several varieties with the same maturity date.  For example:  3 varieties of wheat or 4 varieties of barley.  Planting multiple varieties often increases yields 5% to 7%.  You can also sow different species together:  Mixtures of rye and wheat are called maslin; blends of barley and oats are called dredge; a polyculture of oats, peas and beans is called bulmong.  Mixed grains have better resistance to insects and diseases.

Plant mixtures grow better than individual species.  Sow barley, pinto beans, and tillage radish in separate plots.  Plant a fourth plot with all 3 species.  Come the drought and monocrops shrivel and die, but the polycrop remains green.  Mixed species help each other.  They also support vast networks of beneficial fungi.  The fungi provide water and nutrients to the plants.

“Good farmers grow fungi.  The fungi grow the crops”.

Mixed plants capture more sunlight and produce more biomass.  Rule-of-Thumb:  A polycrop of 1 grain + 1 legume + 1 root crop produces 2 times more vegetation by weight than the same species grown separately.

Polycultures increase grain yields substantially.  For example:  Oats grown alone yielded 43 bushels per acre.  Oats grown with peas and turnips yielded 62 bushels per acre.

Rule-of-Thumb:  You need at least 8 species to get significant benefits from polycultures.  For example:  Oats, peas and turnips yielded 62 bushels per acre.  Oats grown with peas, pinto beans, Dutch white clover, Japanese long turnips, tillage radish, stock beet, and rutabaga yielded 76 bushels per acre.  More species = more biological synergy = higher yields.  For example, mixtures of 12 to 16 species out-yield blends of 8 or fewer species.  Communities of 30 species yield more forage than pastures with only 20 varieties.

Pair tall growing cash crops with short height legumes.  For example:  Sow tall heritage varieties of wheat with Dutch white clover.  Dutch clover grows only 6 inches high so it competes minimally for sunlight with companion crops.  (Planting clover with dwarf or semi-dwarf cereals reduces yields 30% to 50%.  Clover shades grass stems which reduces photosynthesis.  Less sunlight = lower yields).

Sow non-climbing beans with maize for efficient combine harvest.  Vines without tendrils are the best companion plants.  For example:  Maize planted with climbing velvet bean (Mucuna pruriens) yielded 128 bushels per acre.  Maize seeded with non-climbing pinto beans yielded 208 bushels per acre.  Similarly, oats planted with climbing peas yielded 19% less than oats seeded with dwarf peas.

Earthworm (Lumbricus terrestris) growth is determined mostly by the amount and quality of available food.  Plant monocrops and worms take 3 years to reach sexual maturity.  Sow polycrops and earthworms take only 2 years to reproduce.

Earthworms thrive on balanced diets of mixed plants.  1 acre of orchard grass (Dactylis glomerata) supported a population of 361,000 earthworms.  1 acre of 50% orchard grass + 50% Dutch white clover produced 647,000 worms per acre.  Earthworm numbers soared to 2,150,000 per acre planted with a 16 species mix of grasses, legumes, forbs, and root crops.

1,350,000 earthworms per acre feeding on a 20-variety cover crop mix produce 2,700 pounds of surface castings each day of the growing season = about 1 ounce of manure per square foot = 68 pounds of available nitrogen, 35 pounds of phosphorous, and 41 pounds of potassium per acre daily.  That is more than enough fertilizer for maize, sugar cane, potatoes, or any crop a farmer wants to grow.

“Feed the worms and they will tend your crops”.

Cereals grown with companion plants are less susceptible to lodging = falling down.  Over a 61-year period, oats grown by themselves lodged 38 times.  Oats sown with dwarf peas and turnips lodged only 11 times.  In all 11 cases full crops were harvested by cutting and swathing oats into windrows.  Peas and turnips held oat stems above ground so the grain did not spoil in the mud.  (Grain on the ground cannot be harvested due to risk of contamination by pathogenic mold and bacteria).

Weedy fields can be improved by surface planting with clover or other small-seeded legumes.  Large seeded legumes like peas and beans should be drilled with no-till equipment.  The combination of native weeds and nitrogen-fixing legumes makes a cheap mixed species cover crop that will support large populations of earthworms and beneficial insects.  For biological pest control reserve 5% to 10% of cropland for native weeds.

German farmers have a long history of planting Landsberger Gemenge” = Hill Mixture = Mountain Mixture = Waste Land Mixture = multi-species forage crop sown on land unsuitable for plowing.  Typical mixes include 1 cereal or grass + 2 legumes + 1 cabbage family plant or root crop.  For example:  Winter rye + red clover + winter vetch+ forage kale or turnip.  The combination of cereal, pulse, forb, and root crops makes an ideal balanced diet for grazing animals.  Cattle gain 2.5 to 3.5 pounds daily when feeding on forage mixtures of 4 to 5 species.

Plant mixtures extend growing seasons by increasing soil and air temperatures.  Seed tall, medium and short varieties to hold warm air near soil surface.  Multiple species can raise air temperatures 10 degrees Fahrenheit and expand growing seasons by 30 to 60 days.

Related Publications:     Crop Rotation Primer; Biblical Agronomy; The Twelve Apostles; Biological Agriculture in Temperate Climates; Polyculture Primer; Strip Cropping Primer; Worm Farming; Managing Weeds as Cover Crops; Earthworm Primer; Planting Maize with Living Mulches; Living Mulches for Weed Control; Crops Among the Weeds; and The Edge Effect.

Would You Like To Know More?     For more information on biological agriculture and practical polyculture please visit:  http://www.worldagriculturesolutions.com  — or —  send your questions to:  Eric Koperek, Editor, World Agriculture Solutions, 413 Cedar Drive, Moon Township, Pennsylvania, 15108 USA.

About The Author:     Mr. Koperek is a plant breeder who farms in Pennsylvania during summer and Florida over winter.  (Growing 2 generations yearly speeds development of new crop varieties).