BIBLICAL AGRONOMY

“Plant a garden and you work hand in hand with God”.

What Is It?     “Biblical Agronomy” is a philosophy of agriculture, a system of farming based on the Christian bible and practices of the early Catholic Church.  Over time these precepts have evolved into a new way of thinking, a unique form of Biological Agriculture.

How To Do It:     Following are Bible passages with agricultural commentaries to help farmers apply biblical principles in a modern world:

“Thou shalt not kill”.  Exodus 20 : 1 – 17.   Editor’s Note:  This injunction from the “Ten Commandments” is the first principle of Biblical Agronomy and the hardest concept for most farmers to practice.  Modern industrial agriculture is largely negative.  It proceeds from the assumption that nature must be subdued.  Soils must be plowed.  Weeds must be eradicated.  Insects must be exterminated.  Farmers spend much of their time spraying deadly chemicals:  Herbicides, insecticides, fungicides — a laundry list of toxins.  Conventional agriculture is all about killing things.  Biblical agronomy takes the opposite approach:  Agriculture is about life, not death.  Farmers concentrate on genesis = creating life.  Biology replaces chemicals.  Earthworms replace plows.  Plants replace petroleum.  “Let nature do the heavy lifting”.  The principle distinction between Biblical Agronomy and conventional agriculture is that when problems arise farmers ask:  “How do I solve this without killing anything?”

“Speak to the earth, and it shall teach thee”.  Job 12 : 8.  Editor’s Note:  Successful farmers copy nature in their fields.  Two thousand years ago Roman farmers practiced “Cultura Promiscua” = companion planting:  Olives, pomegranates, figs, grapes, cereals, legumes, and vegetables were grown together on small, 5-acre farms worked by hand.  Today, we call this “agroforestry”.  Back then, it was practical husbandry.  Planting mixtures of crops without plowing was the easiest way to maintain soil fertility and prevent erosion.  Native fields and forests have no bare ground.  The earth is constantly covered with mixtures of plants.  Observe nature closely then copy what you see.

“If you enter your neighbor’s grain field, you may pick kernels with your hands, but you must not put a sickle to  his standing grain”.  Deuteronomy 23 : 25.  Editor’s Note:  The poor have the right to eat from your fields but not the right to harvest for profit.  Over the centuries this rule has evolved into the practice of leaving some part of a field unharvested so beneficial insects and wildlife have something to eat.  Modern custom is to reserve 5% to 10% of crops for “Nature’s Pantry”.  The alternative is buying costly insecticides.

“If you enter your neighbor’s vineyard, you may eat all the grapes you want, but do not put any in your basket”.  Deuteronomy 23 : 24.  Editor’s Note:  Eat your fill but do not carry any away.  Hospitality to all in need was official Church doctrine during the Middle Ages.  The right of the hungry to eat from the fields was part of the social safety net for the poor.  This practice was later codified in various “laws of hospitality”.  Modern farmers plant hedgerows and “insectary crops” to feed beneficial wildlife.  Biologically managed vineyards are sown with legumes and wildflowers.  Flowers replace insecticides.

“Do not plant two kinds of seed in your vineyard; if you do, not only the crops you plant but also the fruit of the vineyard will be defiled”.  Deuteronomy 22 : 9.  Editor’s Note:  Modern agronomists interpret this rule as a general injunction against mixing varieties of the same open pollinated species.  Isolation distances must be preserved to prevent cross-pollination so varieties remain pure.  (This rule does not apply to self-pollinated species because out-crossing rarely occurs).

“Isaac planted crops in that land and the same year reaped a hundredfold, because the Lord blessed him.”  Genesis 26 : 12.  Editor’s Note:  Historical seed to harvest ratios of 1 : 100 are not inconceivable.  Roman farmers routinely harvested 40 bushels of wheat per acre.  80-bushel yields were common when irrigated grain followed nitrogen-fixing cover crops of lentils, lupines, clover, or vetch.  Modern wheat varieties regularly produce 100-bushel yields.  The keys to bumper grain crops are no tillage, live soils, wide spacing of individual plants, living mulches to control weeds, companion plants to increase biodiversity, and irrigation to prevent water competition between grain and cover crops.  Farmers in the Middle Ages planted the “Holy Trinity” = 1 grain + 1 legume + 1 root crop.  For example:  Wheat, clover, and turnips.  Seeded at 50 pounds of wheat per acre, this polycrop easily yields 3,000 pounds (50 bushels) per acre = 1 : 60 seed to harvest ratio.

“But the seed falling on good soil refers to someone who hears the word and understands it.  This is the one who produces a crop, yielding a hundred, sixty, or thirty times what was sown.”  Matthew 13 : 33.  Editor’s Note:  Plant most any heritage variety of winter wheat in your garden, for example, Red Fife.  Space plants 1 foot apart equidistantly.  Mulch the ground and water as needed.  Each plant will yield 1 1/2 to 2 1/2 ounces of grain on average = approximately 1,305 to 2,175 seeds per plant = 68 to 113 bushels per acre.  You do not need “improved” or “hybrid” varieties to obtain high yields.  Good growing conditions are the most important factors.

“When you are harvesting in your field and you overlook a sheaf, do not go back to get it.  Leave it for the foreigner, the fatherless and the widow, so that the Lord your God may bless you in all the work of your hands”.  Deuteronomy 24 : 19.  Editor’s Note:  Modern farmers plant wildlife food plots or leave border rows unharvested.  Biological agriculture practice requires that farms be managed as ecosystems rather than individual fields.  The idea is to encourage large populations of many beneficial species.  More biodiversity = healthy ecology = better plant growth = higher yields.

“Do not go over your vineyard a second time or pick up the grapes that have fallen.  Leave them for the poor and the foreigner”.  Leviticus 19 : 10.  Editor’s Note:  Today, “good farming practice” means leaving as much plant residue as possible to prevent erosion and feed soil critters.  Grain fields are harvested with “header reels” to leave standing straw to slow wind and trap snow.  Farmers plant mixed species cover crops to feed earthworms over winter.  Fallen fruits are grazed, composted, or burned to break insect and disease cycles.  Vineyards and orchards are sown with weeds, legumes, wildflowers, and insectary crops to support large populations of beneficial insects.  More flowers = fewer pests.

“When you reap the harvest of your land, do not reap to the very edges of your field or gather the gleanings of your harvest”.  Leviticus 19 : 9.  Editor’s Note:  The right of the poor to glean fields is common to many cultures.  Modern farmers leave border rows unharvested.  Head rows are planted with “bee pasture”.  Strips of weeds, wildflowers, and insectary crops are sown within fields to feed beneficial insects.  Wildlife food plots and “insect refuges” are seeded in odd corners of land.  The idea is to encourage maximum populations of useful species.

Social Commentary:  In this modern world farmers comprise less than 2% of the United States population.  Most farms are located far from cities.  Fields are harvested by machines.  Thus, there are few rural poor and hardly any crops to glean.  This is in stark contrast to biblical times when 98% of the people were farmers, many of them hungry.  Today, feeding the urban poor is not easy.  Rural labor shortages mean there are few hands to pick fruits and vegetables.  Surplus crops often rot in the fields while Food Banks go empty.  The Bible is easy to read but difficult to practice.

“You shall not breed together two kinds of your cattle; you shall not sow your field with two kinds of seed, nor wear a garment upon you of two kinds of material mixed together”.  Leviticus 19 : 19.  Editor’s Note:  Ancient Jews had a passion for keeping everything separate.  This extended to cooking (do not mix meat and milk) and marriage (do not marry “gentiles” = non-Jews).  Modern agronomy has turned the old rules upside down.  Farmers now plant hybrid seeds and graze hybrid cattle on multiple species forage crops.  Science and practical experience have taught us that mixtures grow better than individual species grown separately.  Polycrops are the new “best practice”.  Grains and legumes are sown together.  Fields are planted with strips of unrelated crops.  The goal is maximum biodiversity.  Biology, not chemistry, keeps soils fertile and pests under control.

“But during the seventh year the land shall have a sabbath rest, a sabbath to the Lord; you shall not sow your field nor prune your vineyard”.  Leviticus 25 : 4.  Editor’s Note:  Long rotations break insect and disease cycles.  For example:  Farmers in Argentina rotate 7 years of field crops with 7 years of pasture.  (Alternating pasture and row crops is called “ley farming”).  7-year rotations are ideal for restoring soil structure and fertility.  Rule-of-Thumb:  Never plant the same crop on a field more than once every 7 years.  Reserving 1/7th = 14% of cropland for annual fallow is a great way to support large populations of wildlife and beneficial insects.

“A king who cultivates the field is an advantage to the land”.  Ecclesiastes 5 : 9.  Political Commentary:  Humility precedes learning.  There is much advantage in keeping leaders humble.  From a practical standpoint, a king busy growing his crops has little time for mischief.  Most people care not who runs the government as long as it leaves them alone.  “God bless us with a king who rules and does nothing”.  (Farmers around the world have inherent distrust of government.  This reticence comes from long experience:  When officials arrive, bad things happen).  Farmers who practice Biblical Agronomy tend to be independent spirits.  Many live off-grid.  The majority are socially conservative.  Most have root cellars or can their own vegetables.  Large numbers store a 2-year food supply.  “Biblical” farmers are much like the Amish:  They are part of our modern culture yet live apart from it.

“But on the seventh year you shall let it rest and lie fallow, so that the needy of your people may eat; and whatever they leave the beast of the field may eat.  You are to do the same with your vineyard and olive grove”.  Exodus 23 : 11.  Editor’s Note:  Planting monocrops year after year depletes soil fertility and promotes outbreaks of pests and diseases.  Farmers practicing Biblical Agronomy avoid these problems by keeping 7-year rotations and planting polycrops.  For example:  “The Twelve Apostles” is a multi-species forage mix including 4 grains + 4 legumes + 4 root or forb crops.  Mixed species produce more nutritious forage and higher yields.  “Tithing” 1/7th = 14% of cropland for annual fallow (weeds or mixed species cover crops) promotes large numbers of beneficial insects.  The good bugs eat the bad bugs.

“I will feed them with good pasture, and on the mountain heights of Israel shall be their grazing land”.  Ezekiel 34 : 15.  Editor’s Note:  “Mixed Farming” = growing plants and animals has been the foundation of agriculture since historic times.  The reason is simple:  Plants and animals have evolved to grow well together.  While it is possible to raise plants and animals separately, monocultures are much more susceptible to insects, diseases, and environmental stress.  Biological balance is a key principle of Biblical Agronomy.  Pastures grow better when grazed.  Crops yield more when dunged.  Animals stimulate plants to grow better.  Healthy plants keep animals in good condition.

“What the cows eschew the goats relish.  That which the goats ignore the sheep enjoy.  Upon what the sheep leave the birds feast.  Whatever the fowl demurs the worms delight.  In this way the land feeds all”.

“Thirty milking camels and their colts, forty cows and ten bulls, twenty female donkeys and ten male donkeys”.  Genesis 32 : 15.  Editor’s Note:  Smart farmers use rotation and polycrops to control pests and diseases.  The same principles apply to raising animals.  Herds should be rotated to improve pastures.  Mixed species control weeds and parasites.  For example:  Range chickens 3 or 4 days behind cattle.  Chickens eat fly maggots and keep pastures sanitary.  Every mouth eats something different and so the whole farm produces more food.

“The best medicine is the watchful eye of the herdsman”.

“Know well the state of your flocks, and pay attention to your herds”.  Proverbs 27 : 23.  Editor’s Note:  Anciently, herds grazed randomly and were moved irregularly.  Plants were overgrazed and pastures declined.   Modern farmers practice “Intensive Rotational Grazing”:  Animals are crowded into small paddocks then moved to fresh pasture every 12 to 24 hours.  Each meadow is rotated on a 30-day or longer calendar so plants have time to regrow.  Pasture rotation produces more forage and breaks parasite reproduction cycles.

“The sea coast will be pastures, with cottages for shepherds and folds for flocks”.  Zephaniah 2 : 6.  Editor’s Note:  Piling, carting and spreading manure is hard work.  “Sheep Folding” is easier:  Flocks are crowded into small fields at dusk where they urinate and defecate all night long.  At dawn, animals are turned into fresh pasture.   Fertilized ground can then be plowed and sown.  Alternatively, broadcast seed into standing vegetation then fold animals overnight.  Hooves trod seed into ground.  Trampled plants cover and protect germinating crops.  This is called “Stomp Seeding”.  Roman farmers averaged 40 to 50 bushels of wheat per acre using these methods.  Biblical Agronomy is all about balance.  Plants and animals grow well together.

“I shall become enlightened for the sake of all living things”.

Ten Agricultural Commandments:  Following is a list of biological principles for Biblical Agronomy.  Use these guidelines to make farm management decisions.

I.  Do Not Kill.  Find another way.  Use the least intrusive methods.  “Walk lightly upon the land”.

“Farmers are keepers of the earth”.

II.  Keep the Agricultural Sabbath.  Follow 7-year rotations.  Long rotations control most insects and diseases without need for human intervention.  Crop rotations improve soil tilth and fertility.

“At Nature’s table all are welcome”.

III.  Tithe for Nature.  Provide hospitality to all in need. Leave border rows unharvested.  Plant wildlife food plots.  Reserve 5% to 10% of farmland for hedgerows, windbreaks, and wood lots.  Wildlife are an essential part of the agricultural ecosystem.

“God loves all his creatures, even bugs”.

IV.  Feed the Insects.  Reserve 5% to 10% of cropland for native weeds, insect refuges, bee pasture, and insectary crops.  Conventional monocrop farms are “green deserts” without nectar or pollen for beneficial insects.  Feed the good bugs and they will protect your crops.

V.  Sow Polycultures Whenever Practical.  Plant the “Holy Trinity” and “The Twelve Apostles”.  Mixed species are the key to soil fertility and high yields.

VI.  Do Not Plow.  Practice zero-tillage whenever possible.  Symbiotic fungi are essential to plant health and nutrition.  Beneficial fungal networks must be protected at all times or soil ecology will collapse.

VII.  Keep Soil Covered at All Times.  Soil is a living organism that requires air, water, food, and shelter.  Keep it warm during winter and cool over summer.  Do not let topsoil dry out.  Prevent crusting and compaction so soil can breathe and rain can enter.  Protect fields with mulch or live plants 365 days yearly.  “Keep fields green”.

“Good farmers grow fungi.  The fungi grow the crops”.

VIII.  Feed the Fungi.  Plants feed sugar to fungi.  Fungi provide water and minerals to plants.  Trading requires live roots or fungi die or go dormant.  Plant productivity is directly related to the number and extent of fungal networks.  More fungi = higher yields.  Good farmers keep their fields covered with growing plants year-round.

“Roots in the ground all year round”.

IX.  Encourage Maximum Biodiversity.  Genesis is the heart of Biblical Agronomy.  Agriculture is all about creating life.  Ecosystem productivity and stability are directly related to number of species.  More species = healthy ecology = higher yields.  Good farmers plant many varieties to provide food and shelter for all God’s creatures.

X.  Grow Crops and Animals Together.  Plants and animals are like two sides of an arch:  Remove one and the other falls.  Mixed farms have more biological stability and greater resilience to environmental stress and economic change.  Wide diversity protects farmers from crop failures and uncertain markets.

“The Lord gave the word and great was the company of the creatures”.

The Eleventh Commandment:     “Thou shalt inherit the holy earth as a faithful steward conserving its resources and productivity from generation to generation.  Thou shalt safeguard thy fields from soil erosion, thy living waters from drying up, thy forests from desolation, and protect thy hills from overgrazing by the herds, that thy descendants may have abundance forever.  If any shall fail in this stewardship of the land, thy fruitful fields shall become sterile stony ground or wasting gullies, and thy descendants shall decrease and live in poverty or perish from off the face of the earth”.  [Walter Clay Lowdermilk, soil conservationist, radio broadcast from Jerusalem, June 1939].

Wrapping It Up:     Biblical Agronomy is not so much a rigid set of rules but rather a way of thinking about biology.  Adapt basic principles to fit local conditions.  The key is to be practical rather than zealous.  God will not smite you if you spray the locusts.

Agronomy Notes:

Bee Pasture = Plants selected for long flowering seasons and large amounts of nectar and pollen.  Wild bees and other native insects provide most of the pollination for agricultural crops.  Good farmers sow 5% to 10% of farmland with bee forage.  (If you cannot afford seed plant native weeds).

Border Rows = Crops growing along field edges.  Farmers often leave 2 to 4 rows unharvested to feed wild animals.  Border row dimensions are determined by the width of planting and harvesting machinery.

Head Rows = Empty space at field ends used for turning tractors and farm equipment.  On conventional farms head rows are covered with sod or left bare.  On biologically managed fields head rows are planted with clover, wildflowers, native weeds, or other “bee forage”.  The idea is to provide food and shelter to encourage large numbers of beneficial insects.

Hedgerows = Narrow lines of small trees or shrubs planted to contain animals, slow wind, trap snow, moderate micro-climate, and provide food and shelter for beneficial wildlife.  Ideal hedgerows are composed entirely of economic species that can be harvested for nuts, berries, fruits or other cash crops.  Plant 40 or more species per linear mile for high biodiversity.  Hedgerows support large populations of insect eating birds.

Insectary Crops = Plants with many small flowers ideal for feeding beneficial insects.  For example:  Anise, buckwheat, caraway, clover, coriander, dill, and fennel.  These can be combine harvested and the seed sold for profit.

Insect Refuges = Standing crops left unharvested so insects have undisturbed habitat for feeding and breeding.  For example:  If you mow a hay field all at once the insects have nowhere to go and nothing to eat.  The solution is to leave a strip of meadow unharvested so insect populations are preserved.  (If land is scarce sow native weeds in odd corners or other spaces unsuitable for farm machinery).

“Rotational Grazing Rule-Of-Thumb:  Eat 1/3, Stomp 1/3, Leave 1/3”.

Intensive Rotational Grazing = Crowding animals into small paddocks then moving herd to fresh pasture every 12 to 24 hours.  Pastures are rotated on 30-day or longer cycles so plants have time to regrow.  Rotational grazing produces large amounts of highly nutritious forage.  400% yield increases are possible with mixed species forage crops. Long rotations break insect, disease and parasite reproduction cycles.  (Mob grazing is a similar practice).

Ley Farming = Rotating pasture and field crops to control weeds and fertilize soil.  Combining animals in farm rotations boosts crop yields.  Manure stimulates plant growth more than equal weights of fresh or composted grass.  (Strange things happen in a cow’s stomach.  Grass goes in and super-charged fertilizer comes out.  How this happens is scientific mystery).

Living Mulches = Short plants sown to cover the soil and prevent weed growth.  Cash crops are seeded or transplanted into the living mulch using no-till equipment.  For example:  Peppers can be transplanted into an established sward of Dutch White Clover (Trifolium repens).  The clover smothers weeds and feeds nitrogen to the cash crop.

Mixed Farming = Growing a wide variety of plants and animals on the same farm.  Including pasture and hay in crop rotations.  Grazing herds on harvested fields.  Using animals to control weeds.  Spreading manure to fertilize cash crops.  Mixed farms are more biologically stable and much less susceptible to economic and environmental changes.

Mob Grazing =  Concentrating very large herds on small pastures is called “Mob Grazing”.  Density is about 800 to 1,000 cows per acre and animals are shifted every 1 or 2 hours.  Meadows are rotated on long 6 to 12 month cycles so plants regrow.  High density and long rotations mimic natural migration of buffalo and other vast herds on prairie ecosystems.  (Intensive Rotational Grazing is a closely related practice).

Mulch-In-Place = Sow a fast-growing cover crop that produces large amounts of biomass (stems and leaves).  Kill the mature cover crop with a roller-crimper or sickle-bar mower.  Seed or transplant through the mulch using no-till equipment.  Mulch-In-Place provides 90% to 95% weed control, as good or better than glyphosate (Roundup) or other conventional herbicides.

Multiple Species Cover Crops = Mixtures of plants grown to control weeds, feed livestock, and fertilize fields.  For best results sow many species to enhance biological synergy.  Mixed plants feed soil bacteria and support vast networks of beneficial fungi.  The fungi provide water and nutrients to the plants.  Basic cover crop mixes include:  2 cool season grasses + 2 cool season legumes + 2 cool season broad leaf plants + 2 warm season grasses + 2 warm season legumes + 2 warm season broad leaf plants + 2 or more root crops = 14 or more species.  Use no-till equipment to drill 20 pounds of seed per acre in 2-inch deep furrows spaced 7.5 inches apart.

Polyculture = Growing 2 or more species together.  Polycrops greatly reduce insect pests and produce large amounts of sugar to feed soil bacteria and fungi.  Most soil humus is made by bacteria that eat sugar exuded by plant roots.  Agricultural productivity is directly related to the number of polyculture species.  More species = more leaves and stems = more photosynthesis = more sugar exuded by roots = larger populations of soil microbes = faster nutrient cycling = higher yields.  Some farmers plant cover crops with 60 species!  “There is strength in numbers”.

Strip Cropping = Polyculture system adapted to farm machinery.  Divide farms or fields into narrow strips following land contours.  Plant adjacent strips with unrelated crops to maximize edge effects and increase biodiversity.  Adjust strip widths to match planting and harvesting equipment.  For best results strips should not be wider than 200 feet on flat land or 50 feet on hillsides.  Planting a variety of crops spreads economic and biological risk.  Strip cropping supports large populations of beneficial insects that keep pests under control.

Weed Farming = Manage weeds just like any other cover crop.  (A)  Fertilize and irrigate weeds to promote maximum growth, then flatten with a roller-crimper or sickle-bar mower.  Immediately seed or transplant through the weed mulch using no-till equipment.  (B)  Overseed native weeds with clover or other legumes to make a cheap multi-species cover crop.  (C)  Harvest weeds like silage using a forage chopper.  Use chopped weeds to mulch cash crops.  (D)  For biological pest control, plant weeds next to crops needing protection.  Alternatively, mow strips through tall weeds then plant cash crops down the rows.  Crops grown in weeds rarely have pest problems.  (E)  Native weeds support enormous populations of beneficial insects.  Good farmers reserve 5% to 10% of cropland for weeds.  For best results grow weeds in narrow strips within fields and around field borders.  (F)  Sow weeds to heal bare or worn-out soils.  Wildflower hay can be baled and spread for this purpose or haul weed seeds from the nearest grain elevator.  (G)  Grind weed seeds in a roller mill to make free fertilizer.  Use weed seed meal just like cotton seed meal or other organic plant food.  (H)  When insects threaten to overwhelm, soak chopped weeds in water, strain, then spray “weed tea” on plants.  Weed juice chases away most bugs.

Wildlife Food Plots = Small fields planted with grains, legumes, forbs, and root crops to feed deer, pheasants, turkeys, rabbits, and other game animals.  Wildlife plots are typically seeded on poor, wet or rocky land unsuitable for hay or cash crops.

Windbreaks = Rows of trees, shrubs, perennial Pampas grass, or other vegetation planted to slow wind, stop erosion, trap snow, and moderate micro-climate.  For best results plant windbreaks no closer than 50 feet nor farther than 150 feet apart.  Effective wind protection extends downwind 10 times average tree height.  Plant 40 species per linear mile for high biodiversity.  Windbreaks increase average yields 15% by reducing water loss from crop leaves.  (Common synonyms include:  Greenbelts, Hedgerows, and Shelterbelts).

Wood Lots = Small areas of forest grown to provide firewood.  For highest yield manage trees by coppicing:  Cut down 7-year old trees then harvest on 7-year cycles when stump or root sprouts reach 2 to 3 inches diameter.  Divide forest into 7 sections then harvest each part sequentially.  Coppiced trees live hundreds of years because the are constantly renewed.

Related Publications:     Cover Crop Primer; The Twelve Apostles; Biological Agriculture in Temperate Climates; Polyculture Primer; Strip Cropping Primer; Worm Farming; Managing Weeds as Cover Crops; Earthworm Primer; Planting Maize with Living Mulches; Living Mulches for Weed Control; Crops Among the Weeds; The Edge Effect; Organic Herbicides; Forage Maize for Soil Improvement; Coppicing Primer; Forage Radish Primer; Weed Seed Meal Fertilizer; Intensive Rice Culture Primer; Trash Farming; Pelleted Seed Primer; Upside Down Potatoes; Maize Polyculture Trial 2007 – 2016; No-Till Hungarian Stock Squash; and the Rototiller Primer.

Would You Like To Know More?     For more information on biological agriculture and practical polyculture please visit:  http://www.worldagriculturesolutions.com  — or —  send your questions to:  Eric Koperek, Editor, World Agriculture Solutions, 413 Cedar Drive, Moon Township, Pennsylvania, 15108 USA.

About The Author:     Mr. Koperek is a plant breeder who farms in Pennsylvania during summer and Florida over winter.  (Growing 2 generations yearly speeds development of new crop varieties).

EARTHWORM PRIMER

“Biological Agriculture” relies on earthworms and other soil critters to do what plows and synthetic chemicals do in conventional agronomic systems.  Follow the advice below to encourage worm populations in your fields:

–>     There are many species of earthworms around the world.  The most common agricultural species in North America and Europe are the Common Garden Earthworm = Nightcrawler = Lumbricus terrestris, and the Manure Worm = Redworm = Eisenia foetida.  These are the most prevalent species sold by worm hatcheries for fish bait and farming.

–>     Nightcrawlers dig vertical burrows deep into the subsoil.  At night the worms rise to the soil surface to feed = they drag bits and pieces of leaves and other organic matter down into their tunnels.  Walk through a field at night with a flashlight and you will see many earthworms.

–>     Manure worms live close to the soil surface and do not dig vertical burrows.  Redworms are specialized to eat manure and so they are rarely seen except around the base of compost piles or in fields where many animals graze.

–>     31 nightcrawlers or manure worms per ounce; 500 worms per pound; 1,000,000 worms = 2,000 pounds = 1 ton.  1 average earthworm (Lumbricus terrestris) or manure worm (Eisenia foetida) from a commercial hatchery weighs 0.002 pound = 0.032 ounce = 0.9072 gram.

–>     Active, adult earthworms (Lumbricus terrestris) eat their body weight in soil and organic matter daily.  Sluggish worms, immature worms, and worms of other species may eat only 10% to 30% of their body weight each day.  1,000,000 common earthworms per acre (about 23 worms per square foot of topsoil 12 inches deep) = 1 ton of earthworm castings = worm manure DAILY during the growing season.

–>     Usage Note:  1 earthworm cast, 2 earthworm casts, many earthworm castings.

–>     Average daily worm cast is about 0.90 gram although weight of surface casts is considerably greater and varies widely.  Average surface cast weight is approximately 10 to 14 grams or about 0.30 to 0.50 ounce.  Surface worm cast weight ranges up to about 2 ounces in temperate climates and considerably more in tropical areas, depending on worm species, soil type, and available food.  For example, 1 average adult earthworm (2 to 3 years old) living in a bed of compost in a tropical climate can produce 10 pounds = 4.54 kilograms of castings annually ~ 12.4 grams ~ 0.43 ounce of castings daily.

–>     Average surface cast volume is approximately 1 Tablespoon = 15 milliliters (plus or minus 7 milliliters).

— >     Earthworms are most active in early spring and mid fall when weather is cool and moist.  Ideal soil temperature = 65 degrees Fahrenheit.  Earthworms are less active during hot, dry summer months.  Earthworms rise to the surface to feed at night then sound to lower soil depths each morning when temperatures rise.

–>     Do not plow in spring or fall if practical as this kills many worms.  Do not plow, cultivate, or spray in early evening, after dark, or early in the morning as this kills many worms.  The best time to till, cultivate, or spray is in the afternoon when temperatures are highest and worms have retreated to cooler soil depths.

–>     Keep fields planted with cover crops in spring and fall to feed worms.  They need much food at this time.

–>     Don’t leave soil bare over winter.  Protect winter fields with an insulating blanket of crop residues, mulch, or cover crops.  1 or 2 inches of organic matter can double earthworm populations.

–>     Earthworm populations increase in direct proportion to the amount of organic matter on the soil surface = leaves, twigs, straw, et cetera.  More cover = more protection & more food = higher worm populations.  Keep the soil mulched or covered with growing plants at all times.  2 inches of mulch double worm populations compared to cornfields where whole stalks are left on soil surface.

–>     Baby earthworms when they hatch from their cocoons = egg cases are very small, only 1/2 to 3/4 inch long.  Earthworms are extremely vulnerable when first hatched.  Do not plow, cultivate, or spray when worms are hatching.

–>     Earthworms need protein in their diet.  Worm populations double on legume fields compared to grass fields.  Earthworms especially favor clovers, particularly white clover.  Include legumes in field rotations, pastures & hay fields, cover crop mixes, and living mulches.

–>     Earthworms breed and grow very slowly.  Baby worms take 2 to 3 years to mature.  A plentiful, steady food supply is essential to support maximum breeding and population growth.  More organic matter (roots, stems, leaves) = more food = faster population growth = more worms.

–>     Earthworms do not spread rapidly.  A worm colony might spread 3 feet in a year.  That’s as fast as earthworms go.  To “seed” worms drop 6 nightcrawlers every 30 feet then immediately cover with a generous heap of mulch, compost, or manure = whatever worms are used to eating.  It takes at least 10 years for worm colonies spaced 30 feet apart to spread across an acre-sized field.  1 acre = 43,560 square feet = 4,840 square yards ~ 0.404 hectare.

–>     Adult worms are particularly sensitive to dietary changes.  For example, worms raised in hatcheries die if placed in corn fields because they have problems adapting to new, strange foods.

–>     Do not try to seed Manure Worms = Eisenia foetida in crop fields.  The manure worms will die because they are not adapted to this environment.  Use only nightcrawlers = Lumbricus terrestris for agricultural development, mine reclamation, terraforming, reforestation, and similar environmental restoration projects.

–>     If you need to seed worms, talk to the hatchery and ask for their best deal on earthworm cocoons.  Baby worms adapt quickly to any food available.  Mix egg cases gently with screened peat moss, corn meal, sifted compost, or similar carrier then “plant” with a common grain drill.

–>     Switching from conventional tillage to no-till does not happen overnight.  Conversion speed is entirely dependent on earthworm food supplies.  There is no solution for worms’ low natural reproduction rates.  Buying more worms or egg cases won’t make the process go any faster.  You can’t fix this problem by throwing money at it.  Patience is required.  You won’t see substantial improvements in soil structure or fertility until the fourth or fifth year of no-till ~ 2 earthworm generations.  Dramatic differences become smack-upside-the-head obvious by the 7th or 8th year without plows ~ 4 worm generations.  Conversion speed is controlled by how many tons of organic matter are added to each field.  Start looking at crops in terms of their biomass production.  This game is all about weight.  The farmer with the most tons wins!

–>     Tillage kills earthworms.  Loses depend on plow type, tillage depth, and time.  Chisel plows are the most destructive, disk plows slightly less so.  Old fashioned moldboard plows are the least destructive of all conventional tillage implements.  Chisel plows kill 3 times as many earthworms as moldboard plows.

–>     RULE:  Less tillage is better than more tillage.  Shallow tillage is better than deep tillage.  “Warm tillage” (afternoon & summer) is better than “cool tillage” (spring, fall, morning, evening, and night).

–>     Till just enough to get your crop in the ground.  Disturb the soil as little as possible.  All you need is a small hole to set transplants or a narrow slot to sow seeds.  It is rarely necessary to till more than 2 inches deep (unless you are planting potatoes).

–>     No-Till is better than strip till which is better than ridge till which is better than whole surface conventional plowing.

–>     Rear mounted rototillers are ideal tools for shallow tillage.  For example:  Broadcast winter wheat and Dutch White Clover = Trifolium repens into standing weeds or cover crop.  Mow vegetation then rototill only 2 inches deep to get seeds into the ground.  Irrigate to firm seedbed or wait for rain.  Your field will look rough and trashy but the litter is necessary to prevent wind and water erosion.  Some seeds will be buried too deep, others too shallow, but enough will germinate and survive to produce a good crop.  If soil is too wet, omit rototilling.  You will still make a profitable crop.  Small seeds do not absolutely need to buried in earth.  Cut weeds or nurse crop will cover and protect seed.

–>     Earthworms do not “like” to eat maize leaves and they especially dislike whole corn stalks and cobs.  Continuous corn = planting maize in the same field year after year reduces earthworm populations to minimal levels.  For best results use a stalk chopper or forage chopper to shred dead corn plants so they decompose faster.  Plant maize into a living mulch of Red Clover = Trifolium pratense or other nitrogen fixing legume.  Follow corn with fall turnips or other cover crop to feed and protect worms over winter.  Rotate corn with legumes or other broad leaf cover crops.  Do not follow maize with a grass or cereal crop unless also planted with a companion crop of clover or other legume.  Broad ecological diversity favors large earthworms populations.  Translation:  Worms like a varied, balanced diet.

Example:     Plant forage maize at 80,000 to 100,000 seeds per acre to kill weeds.  Flatten with a roller-crimper or cut with a sickle bar mower after 70 days (18 tons biomass) or approximately 110 days (30 tons biomass per acre).  This is called Mulch-In-Place.  Direct seed pumpkins or squash through the corn mulch with a no-till seeder.  At the same time, broadcast Dutch White Clover = Trifolium repens or other low growing legume over field.  Clover fills any gaps in the mulch and provides earthworms with a “balanced diet”.  Result:  95% or better weed control and few insect pests.  Mulch keeps fruits clean so farmer gets premium prices for his pumpkins.

Note:     Mulch-In-Place is used to grow crops without herbicides.  Popular mulch crops include Winter Rye = Cereal Rye = Secale cereale in temperate climates and Sunn Hemp = Crotalaria juncea in tropical and subtropical climates.

–>     Adult earthworms can live 9 or more years in captivity.  How long worms live in the wild is unknown.

–>     Worms constantly maintain their burrows which often extend 5 to 6 feet into the subsoil.  About the diameter of a pencil, worm holes are essential for aeration and drainage of natural soils.  Fields with populations of 1 million earthworms per acre typically contain approximately 900 to 1,200 MILES of tunnels.  These tubes are lined with “earthworm cement”, a natural glue that keeps tunnels open many years after resident earthworms have died.  Plant roots follow earthworm burrows deep into the subsoil where moisture levels are relatively constant.  This is why crops grown in biologically managed fields have considerable drought resistance.  (Crop roots also follow weed roots into the subsoil, especially weeds with deep taproots.  This is why melons grown in weeds make a crop in dry years while clean cultivated vines shrivel and die).

–>     If agricultural wastes are plentiful earthworms can be fed just like crop plants on an irrigation schedule.  Apply weed seed meal, spoiled corn meal, dried brewer’s grains or similar DRY organic “fertilizer” at 2 Tablespoons (1/8th cup) per square foot ~ 1 ounce per square foot ~ 5 pounds per 100 square feet ~ 1 ton (2,000 pounds) per acre.  Apply WET materials like spent brewer’s grains or fresh cow manure at 8 Tablespoons (1/2 cup) per square foot ~ 4 ounces per square foot ~ 25 pounds per 100 square feet ~ 5 tons per acre.  Broadcast worm food on soil surface.  Reapply as needed when food is eaten = no longer visible on soil surface.

–>     Ammonia based nitrogen fertilizers kill earthworms.  The worst form is anhydrous ammonia gas.  Liquid ammonia fertilizers are far less injurious.  Note:  Organic fertilizers can also be lethal.  Excessive amounts of manure lagoon effluent decimate worm populations.  It is good practice to irrigate before applying ammonia or any fertilizer, chemical or organic.  (Irrigation prevents plants from absorbing too much fertilizer at once.  Over-fed plants attract insect pests).

–>     RULE:  Chemical fertilizers (or manure lagoon effluents) are best applied in small amounts throughout the growing season, ideally diluted in irrigation water.  For best results do not apply fertilizers to bare soils; apply nutrients only to growing plants.  Earthworms are quite sensitive to concentrated chemicals, organic or synthetic.

–>     To stabilize ammonia in animal manures mix with 5% phosphate rock powder by weight (100 pounds of phosphate rock per ton = 2,000 pounds of manure).  Store under cover until needed.  Spread or incorporate manure on field then immediately seed with Buckwheat (Fagopyrum esculentum) or other phosphorous absorbing cover crop.  (Mixing phosphate rock with manure greatly increases phosphate availability to crops.  Organic acids in manure make phosphorous soluble).

–>     Concentrated chemical fertilizers (especially nitrogen) decrease soil organic matter and earthworm populations.  Spread supplementary organic matter on fields where chemical nutrients are applied.  Whenever practical use organic fertilizers to encourage earthworm growth.

–>     How Earthworm Populations Vary by Soil Type and Land Use

50,000 worms/acre ~ 1  worm/square foot:  Moldboard Plowed Continuous Corn; Acid Peat Soils.

80,000 worms/acre ~ 2 worms/square foot:  No-Till Continuous Corn with Herbicide.

150,000 worms/acre ~ 3 worms/square foot:  Fine Gravel Soils; Coarse Sandy Soils; Medium & Heavy Clay Soils.

170,000 worms/acre ~ 4 worms/square foot:  Bare Earth Orchards (Conventional Cultivation); Alluvial = Silt Soils; Light Clay Soils; Heavy Loam Soils.

225,000 worms/acre ~ 5 worms/square foot:  Medium Loam Soils; Fine Sandy Soils.

250,000 worms/acre ~ 6 worms/square foot:  Chisel Plowed Corn & Soybeans Rotation; Chisel Plowed Continuous Soybeans; Light Loam Soils.

500,000  worms/acre ~ 12 worms/square foot:  No-Till with Herbicides.

650,000 worms/acre ~ 15 worms/square foot:  Moldboard Plowed Continuous Soybeans.

1,000,000 worms/acre ~ 23 worms/square foot:  Biological No-Till (Rye Mulch-In-Place); Orchards with Mixed Grass & Legume Sod; Undisturbed Tall Grass Prairies & Hay Fields; Natural Alpine Meadows.

1,300,000 worms/acre ~ 30 worms/square foot:  Biological No-Till with Mixed Species Cover Crops; Fields Fallowed 5 Years (Mostly Broad Leaf Weeds).

2 million worms/acre ~ 46 worms/square foot:  Continuous Clover Living Mulch; Organic Gardens; Dairy Pastures; Manure Fertilized Fields (22 Tons per Acre Yearly).

3 million worms/acre ~ 69 worms/square foot:  Year-Round Mulch 8 Inches Thick (Vineyards & Berry Farms); Sheet Composting 12 Inches Thick (Orchards); High Humus Organic Gardens; Raised Beds Filled with Compost, Leaf Mold, or Manure.

4 million worms/acre ~ 92 worms/square foot:  Undisturbed Temperate Deciduous Forests with Deep Leaf Litter; Intensively Grazed Alpine Pastures.

5 million worms/acre ~ 115 worms/square foot:  Temperate Rain Forests in Oregon & Washington.

6 million worms/acre ~ 138 worms/square foot:  Intensive Rotational Grazing Dairy Pastures; Manure Fertilized Fields (44 Tons per Acre Yearly).

7 million worms/acre ~ 161 worms/square foot:  Greenhouse Beds 3 Feet Deep Filled with Composted Manure.

8 million worms/acre ~ 184 worms/square foot:  New Zealand Sheep Pastures (Intensive Rotational Grazing).

Note:     Numbers are approximate.  Expect considerable variation between countries, climatic zones, elevation above sea level, and land management practices.  Earthworms do not thrive in acidic soils, poorly drained soils, rocky or sandy soils, or tight heavy clays.  The most important environmental factor for earthworm survival is ORGANIC MATTER.  Earthworm numbers increase or decrease dramatically depending on the amount of available food.  Highest populations occur on soils where plants grow year-round, and on soils covered with substantial depths of leaf litter or other plant materials.  To estimate worm populations use a tape measure and straight-edged garden spade, dig a 1 cubic foot soil sample, then carefully break apart the soil and tally earthworm numbers.  Multiple samples per acre yield more accurate estimates.

–>     1 million earthworms per acre is the Holy Grail for most farmers.  This goal is unreachable with conventional farming practices.  To increase worm populations on a field-scale basis requires a long-term soil conservation strategy including crop rotations, cover crops, living mulches, and reduced tillage.  Additional measures such as improved drainage (vertical mulching or tile lines), increased aeration (subsoil ripping or keyline plowing), and erosion control (terraces, contour planting and strip cropping) may also be required.  Overriding all is the logistics of food supply = providing sufficient tonnage of organic matter to feed an army of earthworms and other soil critters.  This is rarely accomplished unless the soil is covered with growing plants 365 days each year.

–>     A watershed management plan is recommended as more water = more vegetation = higher earthworm populations.  The goal is to capture and store every drop of rain that falls upon your land.  Passive or active irrigation may be needed to maintain worm populations at desired levels.

–>     Reaching the goal of 2 or 3 million earthworms per acre is nearly impossible without some form of “mixed agriculture” = crops and farm animals.  Animals provide manure needed to feed large numbers of worms.

–>     Cow manure applied at 1 pound per square foot ~ 22 tons = 44,000 pounds per acre yearly is sufficient to maintain populations of 1 million earthworms per acre (on fields where plants are grown year-round = 365 days annually).

–>     Earthworm populations soar when pastures are managed by intensive rotational grazing or mob grazing.  High concentrations of livestock (300 to 1,500 Animal Units per acre per day) deposit vast quantities of manure.  Fresh manure is excellent worm food.  (1 Animal Unit = 1 AU = 1,000 pounds of live animal weight, regardless of species).

–>     The ancient Roman practice of cattle penning relies on earthworms to help restore “tired”, “weak”, or “sick” fields.  Erect temporary fencing around land to be healed.  Broadcast seed or spread wildflower hay over soil.  Fill enclosure with livestock until land is “well crowded” = animals have just enough room to turn around ~ 8 x 8 feet = 64 square feet per cow ~ 680 cows per acre.  Feed livestock in pen until land is “well dunged and trodden” = 1/2 to 1 pound of manure per square foot ~ 10 to 20 tons of manure per acre = move livestock to new pen every day or every other day.  Cattle stomp seed into earth.  Earthworms and dung beetles till soil.  Manure and urine fertilize ground.  Pastures or fields are “enlivened” = revived by intensive dose of organic matter which causes soil critter populations to soar.  Soil organisms jump start biological nutrient recycling system which supports land revegetation.  Earthworms provide natural soil restoration without tractors, diesel fuel, or synthetic chemicals.

–>     Greek philosophers first noted the link between earthworms and improved crop growth.  This observation led to the development of worm farming practiced by cottagers and other small landholders who did not have cows or draft animals to produce manure for fertilizer.  In spring spread cut weeds and other green plant materials over garden.  Apply mulch thickly = 8 inches deep.  This was the original green manure.  In fall, rake tree leaves and spread over garden 8 inches deep.  Keep garden covered with weeds and leaves year-round.

The night before planting, take a lantern and collect earthworms from hay fields or pastures.  Put worms in a pail with damp moss or leaf mold to keep the “wrigglers” from drying out.  Set several worms with each seed or transplant.  cover immediately with soil and just enough mulch to lightly shade the soil.  When plants are established tuck mulch close around their stems.  Water garden as needed.  Do not spade, fork, plow, till, hoe, or cultivate soil — just plant, mulch, and harvest.  Continuous mulch feeds and protects earthworms and topsoil.  You can run entire farms on nothing but fresh cut weeds and native earthworms.  Space rows widely so there are sufficient weeds to mulch crops liberally.

–>     Over a typical 5 to 6 month growing season, 1 million earthworms per acre will excrete 150 to 180 TONS of worm casts.  These are deposited throughout the soil profile from the surface to approximately 6 feet deep.

Note:  This is a vast amount of nutrients ~ 6.88 to 8.26 pounds of earthworm castings per square foot!  Where does all the fertilizer go?  There are far more available nutrients than any crop could possibly absorb.  This is a mystery.  Nutrient recycling must be extremely rapid with most of the fertilizer elements held within soil critters and organic matter.

–>     Fertilizer Analysis of Surface Earthworm Casts Collected Nightly for 31 Days in July 2011 from 16 Organic Farms in Austria:

2.56% Nitrogen : 1.31% Phosphorous : 1.56% Potassium: 3.69% Calcium = 51.2 pounds Nitrogen + 26.2 pounds Phosphorous + 31.2 pounds Potassium + 73.8 pounds Calcium per ton of earthworm casts.  Average organic matter content of earthworm casts sampled = 7.1% by dry weight.  50 casts bulked for each sample.  16 farms x 31 days = 496 samples total.

–>     Average Nutrient Concentration in Earthworm Casts:

5x Nitrogen (500% more N than found in parent soil)

7x Phosphorous (700% more P than found in parent soil)

10x Potassium (1,000% more K than found in parent soil)

1.5x Calcium (150% more Ca than found in parent soil)

3x Magnesium (300% more Mg than found in parent soil)

Earthworms are living fertilizer factories.  They ingest their weight in soil and organic matter daily then excrete manure containing concentrated plant nutrients.  These nutrients are highly available = easily absorbed and will not “burn” plant roots.  Earthworm casts are rich sources of essential plant micro-nutrients.  These trace elements are often “tied up” = unavailable in parent soils but highly soluble in earthworm casts.  Plants fertilized with earthworm casts rarely require additional nutrients.  This is why earthworm casts have been the standard natural greenhouse fertilizer since the 17th century.

Would You Like To Know More?     Contact the Author directly if you have any questions or need additional information about managing agricultural earthworm populations.

Please visit:     http://www.worldagriculturesolutions.com  — or —  send your questions to:  Eric Koperek, Editor, World Agriculture Solutions, 413 Cedar Drive, Moon Township, Pennsylvania, 15108 United States of America  — or —  send an e-mail to:  Eric Koperek = worldagriculturesolutions@gmail.com

About The Author:     Mr. Koperek is a plant breeder who farms in Pennsylvania during summer and Florida over winter.  (Growing 2 generations yearly speeds development of new crop varieties).