FRENCH INTENSIVE RICE AGRONOMY 1930 – 1980

Application of intensive gardening methods to rice fields increases grain yields substantially.

RICE RESENTS TRANSPLANTING

Bare Root Transplants Grown in Manure Compost (40 days from seeding): 3,122 pounds per acre

2-Inch Manure Cubes: 5,303 pounds per acre

5-Ounce Manure Pots: 6,089 pounds per acre

Direct Seeded Sprouted Rice: 7,620 pounds per acre

Transplant shock reduces yields. Pots are better than cubes for preventing root injury. Transplant seedlings directly first root shows on pot or cube. There is no advantage to delayed planting. Set transplants as soon as practical. Every day lost lowers grain yield. For best results plant pre-sprouted seeds.

RICE DISLIKES FLOODING

Paddy Rice (continuous flooding 8 inches deep): 2,884 pounds per acre

Upland Rice (sprinkler irrigated 28 inches): 4,400 pounds per acre

Rice tolerates flooding but does not thrive. For best yields keep fields moist but not wet. Roots need oxygen to absorb water and nutrients.

CULTIVATION HARMS RICE

Machine Cultivated 4 Times (every 14 days): 2,911 pounds per acre

Hand Weeded 4 Times (every 14 days): 3,460 pounds per acre

56-Day Flood 8 Inches Deep: 3,885 pounds per acre

Flame Weeded 4 Times (every 14 days): 4,336 pounds per acre

Dutch White Clover Living Mulch: 4,532 pounds per acre

Burlap Mulch 2 Bags = 4 Layers Thick: 5,617 pounds per acre

Chopped Weed Mulch 6 Inches Deep: 6,503 pounds per acre

Velvet Bean Mulch-In-Place: 6,924 pounds per acre

Any practice that disturbs soil ecology lowers crop yields. For best results do not plow, disk, harrow, or cultivate fields. Do not interfere with natural biological processes. Try to mimic nature whenever practical.

CROWDING LOWERS RICE YIELD

1 Pre-Sprouted Seed Per Hill: 6,887 pounds per acre

1 Transplant Per Hill: 4,143 pounds per acre

3 Transplants Per Hill: 3,681 pounds per acre

5 Transplants Per Hill: 2,343 pounds per acre

10 Transplants Per Hill: 2,616 pounds per acre

15 Transplants Per Hill: 2,569 pounds per acre

(12-inch equidistant spacing. 208 rows x 208 plants per row = 43,264 plants per acre. 40-day transplants from seeding).

Equidistant spacing increases crop yields by reducing plant competition for light and nutrients. Direct seeded crops usually outperform transplants. Transplant shock is not always immediately apparent; crops can be retarded 2 to 3 weeks which lowers yields.

IRRIGATION BOOSTS GRAIN YIELD

20 Inches Rainfall: 1,298 pounds per acre

Continuous Flooding 1 Inch Deep: 2,559 pounds per acre

20 Inches Rainfall + 8 Inches Irrigation at Grain Filling: 3,003 pounds per acre

Monsoon Rice (Exceeding 28 Inches without Flooding): 3,854 pounds per acre

Ridge & Furrow Irrigation (28 inches): 4,235 pounds per acre

Sheet Irrigation (28 inches) = No Standing Water: 4,870 pounds per acre

Sprinkler Irrigation (28 inches): 5,736 pounds per acre

Drip Irrigation (28 inches): 6,480 pounds per acre

Most agricultural soils do not have enough oxygen for optimum crop growth. Flooded fields yield poorly.

FERTILIZER INCREASES RICE YIELD

No Fertilizer (Rice After Fallow): 3,014 pounds per acre

Supplemental Phosphorus Only (40 pounds per acre): 3,949 pounds per acre

5-10-5 Broadcast (1 Ton Per Acre = 100 Pounds Nitrogen): 4,642 pounds per acre

Velvet Bean Mulch-In-Place (98 Pounds Nitrogen Per Acre): 5,220 pounds per acre

Composted Cow Manure (8 Tons Per Acre = 104 Pounds Nitrogen): 5,833 pounds per acre

Manure Lagoon Water (0.75 Acre-Inch = 20,000 Gallons = 100 Lb Nitrogen / Acre): 6,750 pounds per acre

Small amounts of nutrients can double yields. Prefer biological fertilizers whenever practical.

RICE PREFERS DEEP SOILS

4 Inches of Topsoil over Granite: 1,338 pounds per acre

8 Inches of Topsoil over Granite: 1,734 pounds per acre

12 Inches of Topsoil over Granite: 2,223 pounds per acre

18-Inch Raised Bed: 3,446 pounds per acre

24-Inch Raised Bed: 4,580 pounds per acre

36-Inch Terrace: 4,965 pounds per acre

Crop yield is directly related to soil volume. More roots = more water and nutrients = bigger harvests. Manage fields to increase soil depth and eliminate compaction. Rule-of-Thumb: 5% yield loss for every 1-inch decrease in topsoil depth. 2.25% yield loss for every 1-inch decrease in subsoil depth. This rule applies to most seed crops.

SEED INOCULATION RAISES GRAIN YIELDS

Pre-Sprouted Upland Rice without Beneficial Microbes: 2,622 pounds per acre

Upland Rice Seed Soaked 24 Hours in Fresh Cow Manure Tea (1 dung : 1 water by weight): 3,361 pounds per acre. Use FRESH manure only. Do not use dried or composted dung.

Upland Rice Seed Soaked 24 Hours in Compost Tea (1 compost : 1 water by weight): 3,638 pounds per acre. Use only low temperature, aerobic, fungal dominant compost.

Rice grows better with symbiotic fungi and bacteria. Fungi provide water and minerals to rice. Bacteria fix nitrogen. Active soil biology replaces synthetic chemicals.

SOIL AERATION INCREASES RICE YIELD

16 Inches Topsoil: 2,809 pounds per acre

Subsoil Tillage 16 Inches Deep (0.75-inch wide slit every foot): 3,711 pounds per acre

16 Inches Potting Soil (1 topsoil + 1 coarse sand + 1 peat = 3 parts by volume): 4,261 pounds per acre

16 Inches Topsoil over 4-Inch Diameter Forced Air Ducts Every 2 Feet Apart (220 cubic feet per minute): 5,369 pounds per acre

16 Inches Composted Hardwood Bark: 6,546 pounds per acre

For highest yields manage fields to increase soil porosity. Healthy soils need to breathe. Roots need air to absorb water and nutrients. More oxygen = bigger harvests.

HISTORICAL NOTE: Yield data come from numerous unrelated experiments conducted at many diverse sites over 5 decades, 1930 to 1980. Results are not definitive (absolute) but rather suggestive. The trends are more important than the numbers. For example: Flooded rice generally yields less than sheet irrigated rice (alternate wetting and drying) which usually produces lower yields than sprinkler irrigated rice. These results typically hold true regardless of variety, cultural methods, or environmental conditions. Experimental data vary but the underlying principle does not: Soil aeration increases grain yields. More oxygen = more rice.

This article was written before development of the modern System of Intensive Rice Cultivation. Consequently, the importance of transplanting 10 to 12-day old seedlings was unknown to the Author. 2-leaf transplants develop many tillers which greatly increase rice yields. Equidistant spacing of young transplants is the foundation of intensive rice agronomy.

DEDICATION: This article is dedicated to Father Henri de Laulanie de Sainte-Croix, S.J., who taught me that humility precedes learning. This is not an easy lesson to master. Friar Laulanie (1920 – 1995) was the inventor of intensive rice cultivation = Systeme de Riziculture Intensive (SRI). I had the privilege of working with Friar Laulanie while he developed his new rice agronomy. My interest was in mechanized plantation agriculture while Father Laulanie was the champion of small field subsistence farmers. Consequently, we often approached problems from entirely different directions. I miss our lively correspondence and, especially, our friendly debates, most of which I lost. There is nothing quite like the experience of being steam rolled by the relentless logic of a Jesuit mind.

RELATED PUBLICATIONS: Chemical to Organic Rice Conversion Trials, Trino, Italy 2014 – 2019; Garden Rice Trials, Paia, Hawaii 1924 – 2020; Intensive Rice Culture Primer; Paddy Rice Agronomy Trials, Trino, Italy 1853 – 1910; Ratoon Rice Trials, Paia, Hawaii 1877 – 1924; Rice and Gram Polyculture, Pondicherry, India 1763 – 1865; Rice Polder Trial, Butler, Pennsylvania 1972; Rice Rotation Trial, Puerto Limon, Costa Rica 1950 – 1973; Termite Mound Effects on Upland Rice Yields, Koh Kong, Cambodia 1955.

OTHER ARTICLES OF INTEREST: Wheat Agronomy Trials 2016 – 2020; Red Fife Winter Wheat Trials 1990 – 2009; Stomp Seeded Winter Barley Trials 2008 – 2017; Yield of Small Grains Surface Seeded into Standing Dutch White Clover; Maize and Kidney Bean Polyculture; No-Till Nankeen Cotton in Mulch-In-Place Palmer Amaranth; Growth Stimulation of Pea Nodules by Companion Oats; Oat, Pea, and Turnip Polyculture Trial; Hand Cultivated Maize versus Mexican Sunflower Mulch-In-Place; Upland versus Wadi Barley Cultivation in Morocco; Yield of Forest Rye Grown on Quarry Sand Terraces; Maize Polyculture Trial 2007 – 2016.

WOULD YOU LIKE TO KNOW MORE? For more information on biological agriculture and intensive grain farming please visit: http://www.worldagriculturesolutions.com — or — mail your questions to: Eric Koperek, Editor, World Agriculture Solutions, 413 Cedar Drive, Moon Township, Pennsylvania 15108 United States of America — or — send an e-mail to: worldagriculturesolutions@gmail.com.

Cornell University hosts a comprehensive SRI website at: http://www.sririce.org. E-Mail Address: sririce@cornell.edu.

The original SRI papers by Friar Laulanie are available both online and in the scientific journal Tropicultura: Technical Presentation of the System of Rice Intensification, Based on Katayama’s Tillering Model. Henri de Laulanie. 1993 Tropicultura 13 : 1. Intensive Rice Farming in Madagascar. Henri de Laulanie. 2011 Tropicultura 29 : 3 (183 – 198).

For more information on French Intensive Gardening read this classic work: Manuel Pratique de la Culture Maraichere de Paris. J.G. Moreau. 1845 Alex Richards, Paris. Reprinted in 2010 by Nabu Press. International Standard Book Number (ISBN): 978 114 387 662 2.

ABOUT THE AUTHOR: Mr. Koperek is a plant breeder who farms in Pennsylvania during Summer and Florida over Winter. (Growing 2 generations yearly speeds development of new crop varieties).

INDEX TERMS: 5-10-5 (chemical fertilizer); Aerobic Compost; African Rice; Alternate Wetting and Drying (irrigation); Asian Rice; Beneficial Bacteria; Beneficial Microbes; Burlap Mulch; California Rice Farming; Compost Tea; Composted Hardwood Bark; Cover Crops; Cow Manure Compost; Direct Seeding; Drip Irrigation; Equidistant Spacing; Flame Weeding; Flood Irrigation; French Intensive Gardening; Fungal Dominant Compost; Hand Weeding; Henri de Laulanie (agronomist); Hills (for planting); Indian Rice; Intensive Rice Agronomy; Intensive Rice Culture; Intensive Rice Farming; Intensive Rice Growing; Japanese Rice; Lowland Rice; Low Temperature Compost; Manure Cubes; Manure Lagoon Water; Manure Pots; Manure Tea; Monsoon Rice; Mucuna utilis; Mulching; Mulch-In-Place; Nitrogen Fixing Bacteria; Organic Fertilizers; Organic Rice Farming; Oriental Rice; Oryza glaberrima; Oryza sativa indica; Oryza sativa japonica; Paddy Rice Cultivation; Phosphorus (fertilizer); Plant Density; Pre-Sprouting Seeds; Rice Tillering; Ridge and Furrow Irrigation; Seed Inoculation; Seed Priming; Sheet Irrigation; Sistema Intensivo de Cultivo Arrocero; Soil Aeration; Soil Depth; Soil Porosity; Sprinkler Irrigation; Subsoil Tillage; Symbiotic Fungi; System of Rice Intensification; Systeme de Riziculture Intensive; Transplanting; Upland Rice; Velvet Bean; Weed Control; West African Rice.

ORIGINAL PUBLICATION DATE: November 1981, Lime House, Dominica

UPDATE: July 2023, Homestead, Florida

INTENSIVE RICE CULTURE PRIMER

Synonyms:     Systeme de Riziculture Intensive (SRI) = System of Rice Intensification = la Sistema Intensivo de Cultivo Arrocero (SICA).

What Is It?     Intensive rice culture was invented by a French agronomist, Friar Henri de Laulanie de Saint Croix, Society of Jesuits, in 1983 while working on agricultural development projects in Madagascar.

The basic idea is to space individual plants widely so they grow as many tillers as possible.  More tillers = more grain per plant = up to 7 times average yields.

SRI is directly opposite California practice of crowding 1,000,000 plants per acre (23 plants per square foot).  Closely spaced plants have few tillers and produce less grain per plant, but yields are high because there are so many plants per acre.

Both methods work but SRI is better suited to developing countries where labor is cheap and farmers cannot afford expensive machinery and agricultural chemicals needed for conventional rice agronomy.

Traditional rice culture uses flooded paddies, 21 to 30 day old transplants, and close spacing with 3 or 4 plants per hill.  Transplants are shoved into the mud without regard to root orientation or planting depth.  Rice tolerates these practices but does not thrive.  Consequently, yields are greatly reduced.

Intensive rice culture avoids flooded fields.  Transplants are set at the 2-leaf stage when 8 to 12 days old.  Individual plants are widely spaced with crowns at ground level.  Roots are carefully oriented vertically or horizontally.  Transplanting is done quickly.  These practices greatly increase the number of productive tillers resulting in much higher yields.

Typical SRI plants have 50 to 100 tillers.  Most panicles bear 100 to 200 seeds.  Under ideal conditions yields can exceed 20 metric tons per hectare ~ 8.9 tons per acre.

SRI methods work with most types of upland or lowland rice, West African (Oryza glaberrima) or Asian species (Oryza sativa).  Best results are obtained from long season oriental varieties.

How To Do It:     Following are detailed agronomic practices for intensive rice cultivation.

>>>     Need 7 to 8 kilograms of seed rice per hectare ~ 6 to 7 pounds per acre ~ 100 grams per square meter ~ 3 scale ounces per square yard of nursery bed.

>>>     Prepare salt water solution of sufficient density to float a fresh chicken egg.  Mix seed rice with salt water.  Discard any rice that floats.  Save rice that sinks.  Drain salt water from seed rice.  Wash seed rice thoroughly 4 times to remove salt.  Soak seed rice in fresh water 24 hours to speed germination.  If desired, seed may be pre-germinated in a warm place:  Spread soaked seed on wet burlap bags then cover with more wet burlap.  Seed is ready for planting when the first root on any seed appears.

>>>     Prepare nursery bed of 100 to 150 square meters size per hectare of rice field ~ 50 to 75 square yards per acre.  Rule-of-Thumb:  Nursery area = 1% of field size.  Nursery beds should only be 1 meter ~ 1 yard wide so they can be tended by hand.  For best results locate nursery beds next to rice fields to reduce transplanting time.

>>>     Place plastic sheeting or banana leaves on soil surface to keep rice roots compact.  Fill nursery beds with compost 10 to 15 centimeters ~ 4 to 6 inches deep.  Spread seed sparsely = 2.5 centimeters = 1 inch apart on soil surface.  Cover seed thinly with 1 to 2 centimeters ~ 1/2 to 3/4 inch of compost then mulch lightly with straw or banana leaves.  Water 2 times daily to keep seeds moist.

>>>     If desired, seed can be planted into individual soil cubes, peat pots, or other biodegradable containers that will not restrict root growth.  Alternatively, rice may be direct seeded into prepared fields.  Plant not more than 2 seeds per hill.  Space each seed 5 centimeters ~ 2 inches apart.  Thin seedlings to 1 per hill immediately plants reach 2-leaf stage = 8 to 12 days after emergence.  Cut off excess plants at soil surface to prevent root damage to remaining seedlings.

>>>     Fertilize fields with composted manure or other organic fertilizers then plow.  Recommended rate = 5 to 10 metric tons per hectare = 1/2 to 1 kilogram per square meter ~ 2.25 to 4.5 tons per acre ~ 4,500 to 9,000 pounds per acre ~ 1 to 2 pounds per square yard.  Alternatively, grow a nitrogen-fixing legume like velvet bean (Mucuna pruriens) then plow, roller-crimp, or mow when cover crop flowers.

>>>     Irrigate field with 1.25 to 2.5 centimeters ~ 1/2 to 1 inch of water to moisten soil.  Do not flood field more than 24 hours if practical.  Waterlogged soils reduce yields.

>>>     Mark moist soil with a grid pattern to ensure proper plant spacing.  In hot tropical climates near sea level space individual plants 30 centimeters ~ 12 inches apart.  At higher elevations (1,200 meters ~ 3,900 feet above sea level or 1,500 meters ~ 4,900 feet on the equator) space rice transplants closer together = 25 centimeters ~ 10 inches apart.  Wide plant spacing is essential for maximum tiller growth = higher yields.  Best yields are obtained on highly fertile, equatorial lowland soils when plants are spaced 50 x 50 centimeters ~ 20 inches apart.

>>>     Transplant seedlings in their 2-leaf stage = when plants are 8 to 12 days old.  Do not plant seedlings older than 15 days.  Young transplants grow many tillers which increase yields.  Old transplants grow few tillers.

>>>     Plant 1 seedling only at each grid intersection.  Multiple seedlings crowd each other and decrease yields.

>>>    Transplant seedlings quickly = not more than 15 minutes after lifting plants from nursery bed.  Fast planting reduces shock and increases yields.

>>>     Transplant seedlings carefully = 2 to 3 centimeters ~ 3/4 to 1 1/4 inches deep with roots oriented vertically or horizontally.  Do not turn roots up (like a hook) or yields will fall.  Do not plant deeply or yields will drop.

Rice plants are like strawberries.  Both are highly sensitive to planting depth.  Rice grows few tillers if seeded or transplanted too deeply.  Try to set plants at the same depth they grew in the nursery.  Rice crowns = growing points should be level with soil surface.

>>>     Irrigate fields with 1.25 to 2.25 centimeters ~ 1/2 to 1 inch of water every 7 to 10 days as needed.  Wait until soil cracks before applying more water.  Do not flood field for more than 24 hours if practical.  Standing water reduces yields.  More oxygen to roots increases yields.

>>>    Fertilize field with compost 30 days after transplanting seedlings, then again 60 days after transplanting.  Recommended rate = 5 to 10 metric tons per hectare = 1/2 to 1 kilogram per square meter ~ 2.25 to 4.5 tons per acre = 4,500 to 9,000 pounds per acre ~ 1 to 2 pounds per square yard.  High soil fertility is needed for maximum yields.

Adjust fertilizer rates as necessary.  Tall rice varieties lodge = fall over if plants absorb too much nitrogen.  Yields drop if plants do not have sufficient nutrients during critical phases of vegetative growth and reproduction. 

>>>     Weed field 7 to 10 days after transplanting seedlings.  Use a rotary weeder.  Weed field up to 4 times until rice canopy closes.  Each weeding increases yields by 1 to 2 metric tons per hectare = 890 to 1,780 pounds per acre.

>>>     Stop irrigation 15 days before harvest.  Dry soil is necessary to ripen grain and make harvesting easier.

>>>     Typical SRI yields = 1 kilogram of grain per square meter = 10 metric tons per hectare ~ 8,900 pounds = 4.45 tons per acre.  With good management yields can double.

>>>     SRI Record Yield (crop year 2015) = 22.4 metric tons per hectare = 9.9755 tons per acre = 19,951 pounds per acre = 443 bushels per acre (45 pounds per bushel) = 7.37 ounces per plant at 208 x 208 = 43,264 plants per acre (1 plant per square foot).

For best results follow SRI directions carefully.  Small changes in agronomic practices can have dramatic effects on tiller number, seeds per panicle, and seed weight.

Related Publications:     Crop Rotation Primer; No-Till Subsistence Grain Farming; Pelleted Seed Primer; and Planting Maize with Living Mulches.

For More Information:     Contact the Author directly if you have any questions or need additional information about intensive grain culture systems.

Please visit:     http://www.worldagriculturesolutions.com  — or — mail your questions to:  World Agriculture Solutions, 413 Cedar Drive, Moon Township, Pennsylvania 15108 United States of America  — or — send an e-mail to:                                          erickoperek@gmail.com

Cornell University hosts a comprehensive SRI website at:  SRI Rice Online:  http://sririce.org

E-mail Address:     sririce@cornell.edu

The original SRI papers by Friar Laulanie are available both online and in the scientific journal Tropicultura:

Technical Presentation of the System of Rice Intensification, Based on Katayama’s Tillering Model.  Henri de Laulanie.  1993 Tropicultura 13 : 1.

Intensive Rice Farming in Madagascar.  Henri de Laulanie.  2011 Tropicultura 29 : 3 (183 – 187).

About The Author:     Mr. Koperek is a plant breeder who farms in Pennsylvania during summer and Florida during winter.  Growing 2 generations yearly speeds development of new crop varieties.