BIBLICAL AGRONOMY

“Plant a garden and you work hand in hand with God”.

What Is It?     “Biblical Agronomy” is a philosophy of agriculture, a system of farming based on the Christian bible and practices of the early Catholic Church.  Over time these precepts have evolved into a new way of thinking, a unique form of Biological Agriculture.

How To Do It:     Following are Bible passages with agricultural commentaries to help farmers apply biblical principles in a modern world:

“Thou shalt not kill”.  Exodus 20 : 1 – 17.   Editor’s Note:  This injunction from the “Ten Commandments” is the first principle of Biblical Agronomy and the hardest concept for most farmers to practice.  Modern industrial agriculture is largely negative.  It proceeds from the assumption that nature must be subdued.  Soils must be plowed.  Weeds must be eradicated.  Insects must be exterminated.  Farmers spend much of their time spraying deadly chemicals:  Herbicides, insecticides, fungicides — a laundry list of toxins.  Conventional agriculture is all about killing things.  Biblical agronomy takes the opposite approach:  Agriculture is about life, not death.  Farmers concentrate on genesis = creating life.  Biology replaces chemicals.  Earthworms replace plows.  Plants replace petroleum.  “Let nature do the heavy lifting”.  The principle distinction between Biblical Agronomy and conventional agriculture is that when problems arise farmers ask:  “How do I solve this without killing anything?”

“Speak to the earth, and it shall teach thee”.  Job 12 : 8.  Editor’s Note:  Successful farmers copy nature in their fields.  Two thousand years ago Roman farmers practiced “Cultura Promiscua” = companion planting:  Olives, pomegranates, figs, grapes, cereals, legumes, and vegetables were grown together on small, 5-acre farms worked by hand.  Today, we call this “agroforestry”.  Back then, it was practical husbandry.  Planting mixtures of crops without plowing was the easiest way to maintain soil fertility and prevent erosion.  Native fields and forests have no bare ground.  The earth is constantly covered with mixtures of plants.  Observe nature closely then copy what you see.

“If you enter your neighbor’s grain field, you may pick kernels with your hands, but you must not put a sickle to  his standing grain”.  Deuteronomy 23 : 25.  Editor’s Note:  The poor have the right to eat from your fields but not the right to harvest for profit.  Over the centuries this rule has evolved into the practice of leaving some part of a field unharvested so beneficial insects and wildlife have something to eat.  Modern custom is to reserve 5% to 10% of crops for “Nature’s Pantry”.  The alternative is buying costly insecticides.

“If you enter your neighbor’s vineyard, you may eat all the grapes you want, but do not put any in your basket”.  Deuteronomy 23 : 24.  Editor’s Note:  Eat your fill but do not carry any away.  Hospitality to all in need was official Church doctrine during the Middle Ages.  The right of the hungry to eat from the fields was part of the social safety net for the poor.  This practice was later codified in various “laws of hospitality”.  Modern farmers plant hedgerows and “insectary crops” to feed beneficial wildlife.  Biologically managed vineyards are sown with legumes and wildflowers.  Flowers replace insecticides.

“Do not plant two kinds of seed in your vineyard; if you do, not only the crops you plant but also the fruit of the vineyard will be defiled”.  Deuteronomy 22 : 9.  Editor’s Note:  Modern agronomists interpret this rule as a general injunction against mixing varieties of the same open pollinated species.  Isolation distances must be preserved to prevent cross-pollination so varieties remain pure.  (This rule does not apply to self-pollinated species because out-crossing rarely occurs).

“Isaac planted crops in that land and the same year reaped a hundredfold, because the Lord blessed him.”  Genesis 26 : 12.  Editor’s Note:  Historical seed to harvest ratios of 1 : 100 are not inconceivable.  Roman farmers routinely harvested 40 bushels of wheat per acre.  80-bushel yields were common when irrigated grain followed nitrogen-fixing cover crops of lentils, lupines, clover, or vetch.  Modern wheat varieties regularly produce 100-bushel yields.  The keys to bumper grain crops are no tillage, live soils, wide spacing of individual plants, living mulches to control weeds, companion plants to increase biodiversity, and irrigation to prevent water competition between grain and cover crops.  Farmers in the Middle Ages planted the “Holy Trinity” = 1 grain + 1 legume + 1 root crop.  For example:  Wheat, clover, and turnips.  Seeded at 50 pounds of wheat per acre, this polycrop easily yields 3,000 pounds (50 bushels) per acre = 1 : 60 seed to harvest ratio.

“But the seed falling on good soil refers to someone who hears the word and understands it.  This is the one who produces a crop, yielding a hundred, sixty, or thirty times what was sown.”  Matthew 13 : 33.  Editor’s Note:  Plant most any heritage variety of winter wheat in your garden, for example, Red Fife.  Space plants 1 foot apart equidistantly.  Mulch the ground and water as needed.  Each plant will yield 1 1/2 to 2 1/2 ounces of grain on average = approximately 1,305 to 2,175 seeds per plant = 68 to 113 bushels per acre.  You do not need “improved” or “hybrid” varieties to obtain high yields.  Good growing conditions are the most important factors.

“When you are harvesting in your field and you overlook a sheaf, do not go back to get it.  Leave it for the foreigner, the fatherless and the widow, so that the Lord your God may bless you in all the work of your hands”.  Deuteronomy 24 : 19.  Editor’s Note:  Modern farmers plant wildlife food plots or leave border rows unharvested.  Biological agriculture practice requires that farms be managed as ecosystems rather than individual fields.  The idea is to encourage large populations of many beneficial species.  More biodiversity = healthy ecology = better plant growth = higher yields.

“Do not go over your vineyard a second time or pick up the grapes that have fallen.  Leave them for the poor and the foreigner”.  Leviticus 19 : 10.  Editor’s Note:  Today, “good farming practice” means leaving as much plant residue as possible to prevent erosion and feed soil critters.  Grain fields are harvested with “header reels” to leave standing straw to slow wind and trap snow.  Farmers plant mixed species cover crops to feed earthworms over winter.  Fallen fruits are grazed, composted, or burned to break insect and disease cycles.  Vineyards and orchards are sown with weeds, legumes, wildflowers, and insectary crops to support large populations of beneficial insects.  More flowers = fewer pests.

“When you reap the harvest of your land, do not reap to the very edges of your field or gather the gleanings of your harvest”.  Leviticus 19 : 9.  Editor’s Note:  The right of the poor to glean fields is common to many cultures.  Modern farmers leave border rows unharvested.  Head rows are planted with “bee pasture”.  Strips of weeds, wildflowers, and insectary crops are sown within fields to feed beneficial insects.  Wildlife food plots and “insect refuges” are seeded in odd corners of land.  The idea is to encourage maximum populations of useful species.

Social Commentary:  In this modern world farmers comprise less than 2% of the United States population.  Most farms are located far from cities.  Fields are harvested by machines.  Thus, there are few rural poor and hardly any crops to glean.  This is in stark contrast to biblical times when 98% of the people were farmers, many of them hungry.  Today, feeding the urban poor is not easy.  Rural labor shortages mean there are few hands to pick fruits and vegetables.  Surplus crops often rot in the fields while Food Banks go empty.  The Bible is easy to read but difficult to practice.

“You shall not breed together two kinds of your cattle; you shall not sow your field with two kinds of seed, nor wear a garment upon you of two kinds of material mixed together”.  Leviticus 19 : 19.  Editor’s Note:  Ancient Jews had a passion for keeping everything separate.  This extended to cooking (do not mix meat and milk) and marriage (do not marry “gentiles” = non-Jews).  Modern agronomy has turned the old rules upside down.  Farmers now plant hybrid seeds and graze hybrid cattle on multiple species forage crops.  Science and practical experience have taught us that mixtures grow better than individual species grown separately.  Polycrops are the new “best practice”.  Grains and legumes are sown together.  Fields are planted with strips of unrelated crops.  The goal is maximum biodiversity.  Biology, not chemistry, keeps soils fertile and pests under control.

“But during the seventh year the land shall have a sabbath rest, a sabbath to the Lord; you shall not sow your field nor prune your vineyard”.  Leviticus 25 : 4.  Editor’s Note:  Long rotations break insect and disease cycles.  For example:  Farmers in Argentina rotate 7 years of field crops with 7 years of pasture.  (Alternating pasture and row crops is called “ley farming”).  7-year rotations are ideal for restoring soil structure and fertility.  Rule-of-Thumb:  Never plant the same crop on a field more than once every 7 years.  Reserving 1/7th = 14% of cropland for annual fallow is a great way to support large populations of wildlife and beneficial insects.

“A king who cultivates the field is an advantage to the land”.  Ecclesiastes 5 : 9.  Political Commentary:  Humility precedes learning.  There is much advantage in keeping leaders humble.  From a practical standpoint, a king busy growing his crops has little time for mischief.  Most people care not who runs the government as long as it leaves them alone.  “God bless us with a king who rules and does nothing”.  (Farmers around the world have inherent distrust of government.  This reticence comes from long experience:  When officials arrive, bad things happen).  Farmers who practice Biblical Agronomy tend to be independent spirits.  Many live off-grid.  The majority are socially conservative.  Most have root cellars or can their own vegetables.  Large numbers store a 2-year food supply.  “Biblical” farmers are much like the Amish:  They are part of our modern culture yet live apart from it.

“But on the seventh year you shall let it rest and lie fallow, so that the needy of your people may eat; and whatever they leave the beast of the field may eat.  You are to do the same with your vineyard and olive grove”.  Exodus 23 : 11.  Editor’s Note:  Planting monocrops year after year depletes soil fertility and promotes outbreaks of pests and diseases.  Farmers practicing Biblical Agronomy avoid these problems by keeping 7-year rotations and planting polycrops.  For example:  “The Twelve Apostles” is a multi-species forage mix including 4 grains + 4 legumes + 4 root or forb crops.  Mixed species produce more nutritious forage and higher yields.  “Tithing” 1/7th = 14% of cropland for annual fallow (weeds or mixed species cover crops) promotes large numbers of beneficial insects.  The good bugs eat the bad bugs.

“I will feed them with good pasture, and on the mountain heights of Israel shall be their grazing land”.  Ezekiel 34 : 15.  Editor’s Note:  “Mixed Farming” = growing plants and animals has been the foundation of agriculture since historic times.  The reason is simple:  Plants and animals have evolved to grow well together.  While it is possible to raise plants and animals separately, monocultures are much more susceptible to insects, diseases, and environmental stress.  Biological balance is a key principle of Biblical Agronomy.  Pastures grow better when grazed.  Crops yield more when dunged.  Animals stimulate plants to grow better.  Healthy plants keep animals in good condition.

“What the cows eschew the goats relish.  That which the goats ignore the sheep enjoy.  Upon what the sheep leave the birds feast.  Whatever the fowl demurs the worms delight.  In this way the land feeds all”.

“Thirty milking camels and their colts, forty cows and ten bulls, twenty female donkeys and ten male donkeys”.  Genesis 32 : 15.  Editor’s Note:  Smart farmers use rotation and polycrops to control pests and diseases.  The same principles apply to raising animals.  Herds should be rotated to improve pastures.  Mixed species control weeds and parasites.  For example:  Range chickens 3 or 4 days behind cattle.  Chickens eat fly maggots and keep pastures sanitary.  Every mouth eats something different and so the whole farm produces more food.

“The best medicine is the watchful eye of the herdsman”.

“Know well the state of your flocks, and pay attention to your herds”.  Proverbs 27 : 23.  Editor’s Note:  Anciently, herds grazed randomly and were moved irregularly.  Plants were overgrazed and pastures declined.   Modern farmers practice “Intensive Rotational Grazing”:  Animals are crowded into small paddocks then moved to fresh pasture every 12 to 24 hours.  Each meadow is rotated on a 30-day or longer calendar so plants have time to regrow.  Pasture rotation produces more forage and breaks parasite reproduction cycles.

“The sea coast will be pastures, with cottages for shepherds and folds for flocks”.  Zephaniah 2 : 6.  Editor’s Note:  Piling, carting and spreading manure is hard work.  “Sheep Folding” is easier:  Flocks are crowded into small fields at dusk where they urinate and defecate all night long.  At dawn, animals are turned into fresh pasture.   Fertilized ground can then be plowed and sown.  Alternatively, broadcast seed into standing vegetation then fold animals overnight.  Hooves trod seed into ground.  Trampled plants cover and protect germinating crops.  This is called “Stomp Seeding”.  Roman farmers averaged 40 to 50 bushels of wheat per acre using these methods.  Biblical Agronomy is all about balance.  Plants and animals grow well together.

“I shall become enlightened for the sake of all living things”.

Ten Agricultural Commandments:  Following is a list of biological principles for Biblical Agronomy.  Use these guidelines to make farm management decisions.

I.  Do Not Kill.  Find another way.  Use the least intrusive methods.  “Walk lightly upon the land”.

“Farmers are keepers of the earth”.

II.  Keep the Agricultural Sabbath.  Follow 7-year rotations.  Long rotations control most insects and diseases without need for human intervention.  Crop rotations improve soil tilth and fertility.

“At Nature’s table all are welcome”.

III.  Tithe for Nature.  Provide hospitality to all in need. Leave border rows unharvested.  Plant wildlife food plots.  Reserve 5% to 10% of farmland for hedgerows, windbreaks, and wood lots.  Wildlife are an essential part of the agricultural ecosystem.

“God loves all his creatures, even bugs”.

IV.  Feed the Insects.  Reserve 5% to 10% of cropland for native weeds, insect refuges, bee pasture, and insectary crops.  Conventional monocrop farms are “green deserts” without nectar or pollen for beneficial insects.  Feed the good bugs and they will protect your crops.

V.  Sow Polycultures Whenever Practical.  Plant the “Holy Trinity” and “The Twelve Apostles”.  Mixed species are the key to soil fertility and high yields.

VI.  Do Not Plow.  Practice zero-tillage whenever possible.  Symbiotic fungi are essential to plant health and nutrition.  Beneficial fungal networks must be protected at all times or soil ecology will collapse.

VII.  Keep Soil Covered at All Times.  Soil is a living organism that requires air, water, food, and shelter.  Keep it warm during winter and cool over summer.  Do not let topsoil dry out.  Prevent crusting and compaction so soil can breathe and rain can enter.  Protect fields with mulch or live plants 365 days yearly.  “Keep fields green”.

“Good farmers grow fungi.  The fungi grow the crops”.

VIII.  Feed the Fungi.  Plants feed sugar to fungi.  Fungi provide water and minerals to plants.  Trading requires live roots or fungi die or go dormant.  Plant productivity is directly related to the number and extent of fungal networks.  More fungi = higher yields.  Good farmers keep their fields covered with growing plants year-round.

“Roots in the ground all year round”.

IX.  Encourage Maximum Biodiversity.  Genesis is the heart of Biblical Agronomy.  Agriculture is all about creating life.  Ecosystem productivity and stability are directly related to number of species.  More species = healthy ecology = higher yields.  Good farmers plant many varieties to provide food and shelter for all God’s creatures.

X.  Grow Crops and Animals Together.  Plants and animals are like two sides of an arch:  Remove one and the other falls.  Mixed farms have more biological stability and greater resilience to environmental stress and economic change.  Wide diversity protects farmers from crop failures and uncertain markets.

“The Lord gave the word and great was the company of the creatures”.

The Eleventh Commandment:     “Thou shalt inherit the holy earth as a faithful steward conserving its resources and productivity from generation to generation.  Thou shalt safeguard thy fields from soil erosion, thy living waters from drying up, thy forests from desolation, and protect thy hills from overgrazing by the herds, that thy descendants may have abundance forever.  If any shall fail in this stewardship of the land, thy fruitful fields shall become sterile stony ground or wasting gullies, and thy descendants shall decrease and live in poverty or perish from off the face of the earth”.  [Walter Clay Lowdermilk, soil conservationist, radio broadcast from Jerusalem, June 1939].

Wrapping It Up:     Biblical Agronomy is not so much a rigid set of rules but rather a way of thinking about biology.  Adapt basic principles to fit local conditions.  The key is to be practical rather than zealous.  God will not smite you if you spray the locusts.

Agronomy Notes:

Bee Pasture = Plants selected for long flowering seasons and large amounts of nectar and pollen.  Wild bees and other native insects provide most of the pollination for agricultural crops.  Good farmers sow 5% to 10% of farmland with bee forage.  (If you cannot afford seed plant native weeds).

Border Rows = Crops growing along field edges.  Farmers often leave 2 to 4 rows unharvested to feed wild animals.  Border row dimensions are determined by the width of planting and harvesting machinery.

Head Rows = Empty space at field ends used for turning tractors and farm equipment.  On conventional farms head rows are covered with sod or left bare.  On biologically managed fields head rows are planted with clover, wildflowers, native weeds, or other “bee forage”.  The idea is to provide food and shelter to encourage large numbers of beneficial insects.

Hedgerows = Narrow lines of small trees or shrubs planted to contain animals, slow wind, trap snow, moderate micro-climate, and provide food and shelter for beneficial wildlife.  Ideal hedgerows are composed entirely of economic species that can be harvested for nuts, berries, fruits or other cash crops.  Plant 40 or more species per linear mile for high biodiversity.  Hedgerows support large populations of insect eating birds.

Insectary Crops = Plants with many small flowers ideal for feeding beneficial insects.  For example:  Anise, buckwheat, caraway, clover, coriander, dill, and fennel.  These can be combine harvested and the seed sold for profit.

Insect Refuges = Standing crops left unharvested so insects have undisturbed habitat for feeding and breeding.  For example:  If you mow a hay field all at once the insects have nowhere to go and nothing to eat.  The solution is to leave a strip of meadow unharvested so insect populations are preserved.  (If land is scarce sow native weeds in odd corners or other spaces unsuitable for farm machinery).

“Rotational Grazing Rule-Of-Thumb:  Eat 1/3, Stomp 1/3, Leave 1/3”.

Intensive Rotational Grazing = Crowding animals into small paddocks then moving herd to fresh pasture every 12 to 24 hours.  Pastures are rotated on 30-day or longer cycles so plants have time to regrow.  Rotational grazing produces large amounts of highly nutritious forage.  400% yield increases are possible with mixed species forage crops. Long rotations break insect, disease and parasite reproduction cycles.  (Mob grazing is a similar practice).

Ley Farming = Rotating pasture and field crops to control weeds and fertilize soil.  Combining animals in farm rotations boosts crop yields.  Manure stimulates plant growth more than equal weights of fresh or composted grass.  (Strange things happen in a cow’s stomach.  Grass goes in and super-charged fertilizer comes out.  How this happens is scientific mystery).

Living Mulches = Short plants sown to cover the soil and prevent weed growth.  Cash crops are seeded or transplanted into the living mulch using no-till equipment.  For example:  Peppers can be transplanted into an established sward of Dutch White Clover (Trifolium repens).  The clover smothers weeds and feeds nitrogen to the cash crop.

Mixed Farming = Growing a wide variety of plants and animals on the same farm.  Including pasture and hay in crop rotations.  Grazing herds on harvested fields.  Using animals to control weeds.  Spreading manure to fertilize cash crops.  Mixed farms are more biologically stable and much less susceptible to economic and environmental changes.

Mob Grazing =  Concentrating very large herds on small pastures is called “Mob Grazing”.  Density is about 800 to 1,000 cows per acre and animals are shifted every 1 or 2 hours.  Meadows are rotated on long 6 to 12 month cycles so plants regrow.  High density and long rotations mimic natural migration of buffalo and other vast herds on prairie ecosystems.  (Intensive Rotational Grazing is a closely related practice).

Mulch-In-Place = Sow a fast-growing cover crop that produces large amounts of biomass (stems and leaves).  Kill the mature cover crop with a roller-crimper or sickle-bar mower.  Seed or transplant through the mulch using no-till equipment.  Mulch-In-Place provides 90% to 95% weed control, as good or better than glyphosate (Roundup) or other conventional herbicides.

Multiple Species Cover Crops = Mixtures of plants grown to control weeds, feed livestock, and fertilize fields.  For best results sow many species to enhance biological synergy.  Mixed plants feed soil bacteria and support vast networks of beneficial fungi.  The fungi provide water and nutrients to the plants.  Basic cover crop mixes include:  2 cool season grasses + 2 cool season legumes + 2 cool season broad leaf plants + 2 warm season grasses + 2 warm season legumes + 2 warm season broad leaf plants + 2 or more root crops = 14 or more species.  Use no-till equipment to drill 20 pounds of seed per acre in 2-inch deep furrows spaced 7.5 inches apart.

Polyculture = Growing 2 or more species together.  Polycrops greatly reduce insect pests and produce large amounts of sugar to feed soil bacteria and fungi.  Most soil humus is made by bacteria that eat sugar exuded by plant roots.  Agricultural productivity is directly related to the number of polyculture species.  More species = more leaves and stems = more photosynthesis = more sugar exuded by roots = larger populations of soil microbes = faster nutrient cycling = higher yields.  Some farmers plant cover crops with 60 species!  “There is strength in numbers”.

Strip Cropping = Polyculture system adapted to farm machinery.  Divide farms or fields into narrow strips following land contours.  Plant adjacent strips with unrelated crops to maximize edge effects and increase biodiversity.  Adjust strip widths to match planting and harvesting equipment.  For best results strips should not be wider than 200 feet on flat land or 50 feet on hillsides.  Planting a variety of crops spreads economic and biological risk.  Strip cropping supports large populations of beneficial insects that keep pests under control.

Weed Farming = Manage weeds just like any other cover crop.  (A)  Fertilize and irrigate weeds to promote maximum growth, then flatten with a roller-crimper or sickle-bar mower.  Immediately seed or transplant through the weed mulch using no-till equipment.  (B)  Overseed native weeds with clover or other legumes to make a cheap multi-species cover crop.  (C)  Harvest weeds like silage using a forage chopper.  Use chopped weeds to mulch cash crops.  (D)  For biological pest control, plant weeds next to crops needing protection.  Alternatively, mow strips through tall weeds then plant cash crops down the rows.  Crops grown in weeds rarely have pest problems.  (E)  Native weeds support enormous populations of beneficial insects.  Good farmers reserve 5% to 10% of cropland for weeds.  For best results grow weeds in narrow strips within fields and around field borders.  (F)  Sow weeds to heal bare or worn-out soils.  Wildflower hay can be baled and spread for this purpose or haul weed seeds from the nearest grain elevator.  (G)  Grind weed seeds in a roller mill to make free fertilizer.  Use weed seed meal just like cotton seed meal or other organic plant food.  (H)  When insects threaten to overwhelm, soak chopped weeds in water, strain, then spray “weed tea” on plants.  Weed juice chases away most bugs.

Wildlife Food Plots = Small fields planted with grains, legumes, forbs, and root crops to feed deer, pheasants, turkeys, rabbits, and other game animals.  Wildlife plots are typically seeded on poor, wet or rocky land unsuitable for hay or cash crops.

Windbreaks = Rows of trees, shrubs, perennial Pampas grass, or other vegetation planted to slow wind, stop erosion, trap snow, and moderate micro-climate.  For best results plant windbreaks no closer than 50 feet nor farther than 150 feet apart.  Effective wind protection extends downwind 10 times average tree height.  Plant 40 species per linear mile for high biodiversity.  Windbreaks increase average yields 15% by reducing water loss from crop leaves.  (Common synonyms include:  Greenbelts, Hedgerows, and Shelterbelts).

Wood Lots = Small areas of forest grown to provide firewood.  For highest yield manage trees by coppicing:  Cut down 7-year old trees then harvest on 7-year cycles when stump or root sprouts reach 2 to 3 inches diameter.  Divide forest into 7 sections then harvest each part sequentially.  Coppiced trees live hundreds of years because the are constantly renewed.

Related Publications:     Cover Crop Primer; The Twelve Apostles; Biological Agriculture in Temperate Climates; Polyculture Primer; Strip Cropping Primer; Worm Farming; Managing Weeds as Cover Crops; Earthworm Primer; Planting Maize with Living Mulches; Living Mulches for Weed Control; Crops Among the Weeds; The Edge Effect; Organic Herbicides; Forage Maize for Soil Improvement; Coppicing Primer; Forage Radish Primer; Weed Seed Meal Fertilizer; Intensive Rice Culture Primer; Trash Farming; Pelleted Seed Primer; Upside Down Potatoes; Maize Polyculture Trial 2007 – 2016; No-Till Hungarian Stock Squash; and the Rototiller Primer.

Would You Like To Know More?     For more information on biological agriculture and practical polyculture please visit:  http://www.worldagriculturesolutions.com  — or —  send your questions to:  Eric Koperek, Editor, World Agriculture Solutions, 413 Cedar Drive, Moon Township, Pennsylvania, 15108 USA.

About The Author:     Mr. Koperek is a plant breeder who farms in Pennsylvania during summer and Florida over winter.  (Growing 2 generations yearly speeds development of new crop varieties).

BIOLOGICAL AGRICULTURE IN TEMPERATE CLIMATES

A Seminar at Cornell University, Monday 19 November 2018. Sponsor: Norman Uphoff, Professor Emeritus, International Programs SRI Project, College of Agriculture and Life Sciences. Guest Speaker: Eric Koperek = erickoperek@gmail.com. Website: http://www.worldagriculturesolutions.com

My ancestors were literally dirt poor = without soil. They farmed abandoned quarry land. Over the course of 8 centuries they created 10 to 15 feet of topsoil = 1/5 to 1/4 inch yearly. This is how they did it:

BIOLOGICAL AGRICULTURE PRINCIPLES

Copy Nature: “Gardeners are the best farmers”. Observe nature closely then mimic what you see. How do you grow your garden? What do you see in the forest? Copy this in your fields. The idea is to combine biological processes with labor efficient agricultural machinery.

Keep Fields Green: Fields should be covered with growing plants 365 days yearly. Do not waste sunlight. The goal is to produce the maximum possible amount of organic matter per square foot each year. More plants = more organic matter = increased populations of soil “critters” = faster nutrient cycling = higher crop yields. “Roots in the ground all year round”.

No Soil Disturbance: Avoid plowing, disking, harrowing, and cultivation whenever practical. Transplant crops or surface sow using pelleted seed and no-till equipment. Tillage kills earthworms and destroys fungal networks = lower crop yields. “Good farmers grow fungi. The fungi grow the crops”.

Keep Soil Covered: Use living mulches, dead mulches, or growing crops to keep fields covered year-round. Control weeds with Mulch-In-Place. Never leave soil bare not even for a single day. Harvest and replant fields the same day or try relay planting: Sow the following crop several weeks before the first crop is harvested.

Worm Farming:  Use earthworms (Lumbricus terrestris) to till and fertilize fields. Earthworms are the key to biological soil management. Worms eat their weight in soil and organic matter daily. One million earthworms per acre = 1 ton of worm manure daily. More worms = more nutrients = higher crop yields. “Feed the worms and the worms will tend your crops”.

Increase Biological Diversity: Grow many crops rather than one crop. Plant polycultures whenever practical. Multiple crops diminish risk of crop failure. “Life breeds life”. More crops = more biological activity = higher yields.

Watershed Management: Agriculture is all about water management. Mind the water and everything else will fall in place. The goal is zero runoff = trap every drop of rain and flake of snow that falls on the land. Store water for dry seasons. Build ponds wherever possible. Irrigate whenever practical. Water is the best investment a farmer can make. One drought pays for an irrigation system.

Biological Nitrogen Fixation: Grow your own fertilizer. Rotate nitrogen fixing cover crops with cash crops. Plant small grains and clover together. Seed maize into roller-crimped Red Clover (Trifolium pratense). Transplant vegetables into Dutch White Clover (Trifolium repens). Topseed cash crops with low growing legumes. Include 50% legumes in pasture and cover crop mixes.

Increase Edge Effects: Divide big fields into smaller fields. Plant hedgerows and windbreaks. Mix fields with pastures, orchards, hay fields and forest. Grow unrelated crops in narrow strips = strip cropping. Plant borders and head rows with clover and insectary crops. The idea is to attract and maintain large populations of beneficial insects. “The good bugs eat the bad bugs”.

Plant Multi-Species Cover Crops: Mixtures of plants repel insect pests, fix more nitrogen, better resist drought, and produce more organic matter than plants grown alone. Plants in mixtures cooperate with each other sharing water and nutrients through fungal networks. Multi-species cover crops can fix more than 100 pounds of nitrogen per acre; this nitrogen is not accounted by conventional soil tests. Mixed species cover crops promote maximum earthworm populations, up to 8 million worms (8 tons) per acre = 184 worms per cubic foot of topsoil.

Long Rotations Increase Yields: 7-year rotations best control soil diseases and insect pests. Never follow similar crops in sequence (oats & wheat; carrots & potatoes; lettuce & spinach). Never follow crops in the same botanical family (tomatoes & peppers; pumpkins & squash). Never follow plants sharing common pests or diseases.

Grass Crops Make Deep Soils: Integrate perennial grass crops into field rotations. This is called Ley Farming. Perennial pastures and grazing animals promote large earthworm populations = 1 ton per acre = 1 million worms per acre = 23 worms per cubic foot of topsoil = 120 miles of earthworm burrows per acre. Worms produce vast amounts of castings = manure, more than needed for any commercial crop.

Integrate Animals and Crops: Use grazing animals to fertilize fields. Practice Rotational Grazing, Mob Grazing, Stomp Seeding, Cattle Penning, and Folding = Yarding to improve fields and increase yields. Sustainable agriculture is difficult to achieve without farm animals.

Plant Weeds and Crops Together: Reserve 5% to 10% of farm for native weeds. Plant weeds in narrow strips within and around fields. Grow orchards and vine crops in weeds. Weeds provide food, shelter, and alternate hosts for beneficial insects that protect cash crops. “Weeds are the shepherds of the garden”. More weeds = less insect pests.

Plant Flowers with Crops: Most beneficial insects have small mouth parts and so they need tiny flowers on which to feed. Healthy farms grow many small-flowered plants to encourage maximum populations of helpful insects. For best results plant flowers and weeds next to crops needing protection. Sow flowers around fields, orchards, vineyards — anywhere there is open space. More flowers = less pests.

Making Sense of It All

Biological agriculture requires patience. Converting a field from conventional chemical agriculture usually requires 12 to 15 years before the soil is healthy enough to sustain commercial yields without added fertilizer.

Active biological soils easily produce 160 bushels (8,960 pounds) of maize per acre without plowing, fertilizer, herbicides, or cultivation. Irrigated fields can exceed 200 bushels (11,200 pounds) per acre.

On biologically managed soils, most Japonica rice varieties yield 3.5 ounces of grain per plant = 9,528 pounds per acre when plants are direct seeded 12 inches equidistantly on drip irrigated fields. (Indica rice varieties yield less, about 1.5 ounces of grain per plant = 4,083 pounds per acre).

Related Publications:     Crop Rotation Primer; Biblical Agronomy; The Twelve Apostles; Polyculture Primer; Strip Cropping Primer; Worm Farming; Managing Weeds as Cover Crops; Intensive Rice Culture Primer; Weed Seed Meal Fertilizer; Earthworm Primer; Planting Maize with Living Mulches; Living Mulches for Weed Control; Crops Among the Weeds; Forage Maize for Soil Improvement; Forage Radish Primer; The Edge Effect; Coppicing Primer; and Rototiller Primer.

Would You Like To Know More? Please contact the Author directly if you have any questions or need more information about Biological Agriculture.

Eric Koperek. Office Address: 413 Cedar Drive, Moon Township, Pennsylvania, 15108 United States of America. Cellular Telephone Number: 412-888-7684. E-Mail Address: erickoperek@gmail.com. Website Address: http://www.worldagriculturesolutions.com

About The Author: Mr. Koperek is a plant breeder who farms in Pennsylvania during summer and Florida during winter. (Growing 2 generations yearly speeds development of new crop varieties).

 

 

 

 

 

 

THE EDGE EFFECT

What Is It?     All chemical reactions take place on surfaces.  The more surface area, the more reactions take place.  The biological corollary to this natural law is called the edge effect:  Life increases proportionately to the boundary area between different environments.  More edges = more interaction between environments = more food and habitat = more varied species and larger populations.

For example, where cold ocean currents meet warm currents there is an explosion of life along the boundary layers between uniquely different ecologies.  Plankton and bait fish thrive.  Abundant food supplies support large populations of predatory fish which, in turn, attract apex predators like man.  Fishing boats congregate in the whorls formed by mixing currents.  More edges = more life.

Life Breeds Life:     Every time a new species is added to an environment it provides food and habitat for numerous other species.  As species diversity increases the local ecology becomes more complex, more stable, and more capable of supporting additional life.  In short, life breeds life.

Practical Farm Ecology:     Farming is a type of ecological management; each field, pasture, and hedgerow is a different environment with its own varied species and micro-climate.  Smart farmers manipulate agricultural ecologies to achieve specific ends such as pest suppression, erosion prevention, soil development, water conservation, pollution control, and climate moderation.

How To Do It:     The basic principle is simple — create as many edges as possible across the land.  Establish or encourage as many species as practical.  Follow the examples below and watch life flourish on your farm.

Pests Be Gone:     Many modern farmers plant fence row to fence row then tear out the fence rows to make even larger fields.  Wrong.  Huge fields = fewer edges = more pests.  A better strategy is to divide large fields into smaller units — or — plant dissimilar crops in long, narrow strips within each field.  Alternate tall crops with short crops, narrow-leaved crops with broadleaf crops, nitrogen-fixing crops with non-legumes.  Every field should have at least 2 unrelated species.  For example, plant narrow 4-row strips of corn and soybeans rather than vast monocultures.  Result:  Pest populations drop 50% and corn yields rise 15% (because leaves get more sunlight).

Medieval Ecology:     Back when knights went clanking around in armor, farmers grew crops in long narrow fields (because it was difficult to turn heavy wood plows).  A typical 1-acre field measured 22 yards wide and 220 yards long.  Adjacent fields were planted with different crops, forage plants, or fallow.  This strip cropping system created many edges = large populations of beneficial insects.  Medieval records rarely mention plant pests because the good bugs ate the bad bugs.  No synthetic chemicals necessary.

Head Rows:     Tractors and horse teams need lots of space to turn around; turning areas at field ends are called head rows.  On most farms head rows are left in sod or, even worse, bare earth.  Head rows are one of many unique farm environments and should be managed accordingly.  There are far better and more profitable alternatives to common grass or naked ground:

(1)  Expand head rows to enclose each field.  This enables farm equipment to circle around crop margins, increasing mechanical efficiency and creating more edges.  Result:  Instead of having two isolated head rows, you now have two fields, one larger field inside a smaller border field.

(2)  Plant the surrounding buffer field with quick-growing cash crops like buckwheat (Fagopyrum esculentum), bee plants like lacy phacelia (Phacelia tanacetifolia), or seed with mixed forages and clovers, wild flowers, or specialty seed crops like anise (Pimpinella anisum), dill (Anethum graveolens), caraway (Carum carvi), coriander (Coriandrum sativum), and fennel (Foeniculum vulgare).  The best buffer crops have small flowers to provide pollen and nectar for beneficial insects.  (Big flowers won’t work because the good bugs have small mouth parts).

(3)  If money is tight, plant weeds around field borders.  Grain elevator screenings are free or cheap and contain many weed seeds.  Mixed weeds provide good food and habitat for predatory and parasitic insects.  For example, the braconid wasp Macrocentrus ancylivorus is a major predator of Oriental Fruit Moths (Grapholita molesta) and Peach Twig Borers (Anarsia lineatella).  Planting weeds and wildflowers around peach orchards not only provides pollen and nectar but also necessary alternate hosts such as Ragweed Borer (Epiblema strenuana) and Sunflower Moth (Homoeosoma electellum).  Result:  When the bad bugs arrive, the good bugs are already waiting to eat them.

Hedge Rows:     Windbreaks, greenbelts, shelter belts, and hedgerows all mean the same thing:  Long, thin lines of vegetation planted to slow wind speed, raise humidity, trap snow, reduce soil erosion, and increase soil water absorption.  Good windbreaks greatly multiply biological diversity and provide food and habitat for many species of beneficial birds and insects.  For best results, plant hedgerows along field contours or perpendicular (at right angle) to prevailing winds or water flow.  Greenbelts do not have to be wide in order to be effective; hedges 4 to 8 feet broad or strips of tall-growing perennial grass 1 to 3 feet wide are sufficient for most purposes and will save valuable land for cash crops.  Space windbreaks no closer than 50 feet and no farther than 50 yards apart.  Closer spacing reduces farming efficiency while wider spacing will not control wind speed effectively.  Make shelter belts long to prevent wind from sweeping around the ends.  Minimum length is 10 times the tallest mature tree height in the greenbelt.  Ideal hedgerows contain a variety of plants selected for their economic or environmental value.  Try to plant 40 or more different species per acre or linear mile of windbreak.

Ecology Math:     Creating edge effects requires uncommon thinking, a different way of looking at land.  Most farmers are used to broad square fields.  Edge effect agriculture requires linear thinking:  Thin strips and long, narrow rectangular spaces.  For example, consider a 49-acre farm woodlot, 7 x 7 acres square or approximately 1,456 feet per side x 4 sides = 5,824 linear feet of forest edge.  Take the same woodlot and stretch it into a narrow rectangle 1 acre wide and 49 acres long = (208 feet wide x 2 short sides) + (10,192 feet long x 2 long sides) = 416 + 20,384 = 20,800 linear feet of forest edge.  The border of the narrow woodlot (3.93 miles) is more than 3 1/2 times longer than the border (1.1030 miles) of the square woodlot.  More edges = more life.  Wrap the narrow woodlot around the northwest corner of your farm (or divide the trees into long strips planted at right angle to prevailing winds).  More trees = higher humidity = less water stress = higher crop yields.

Mixed Company:     Each crop has its own architecture, its own micro-climate, and its own assortment of insects and critters that live on its leaves, stems, flowers, and roots.  In short, every species creates its own micro-ecology.  Combine numerous species together and each individual plant becomes an edge where many life forms interact for the benefit of all.  Mixed species have more resistance to pests and more resilience to bad weather.

Ecology By Design:     Mixing crop species is not a new idea; farmers sowed rye and wheat together in the Middle Ages.  The mixed grain crop was called maslin and provided farmers with insurance against catastrophic loss.  If disease or bad weather killed the wheat, stronger rye would survive to make a crop.   Back in colonial times, Thomas Jefferson seeded mixed cover crops of buckwheat, vetch, and turnips to restore fertility to “tired fields”.  Today, mixed cover crops are an essential part of modern agronomy.

Strength In Numbers:     Ideal cover crop mixes contain cool and warm weather species, nitrogen fixing legumes, hardy grasses, broad leaf plants, and root crops.  The idea is to mimic nature by creating an artificial jungle, a jumble of varieties adapted to a wide range of pests, diseases, and growing conditions.  Plant mixtures grow with more vigor and yield than individual species grown in monoculture.  This is an edge effect called synergy, a natural phenomenon where the total is more than the sum of each individual part.

Cover Crop Cocktail:     To make your own cover crop mix, combine 2 cool season grasses + 2 cool season legumes + 2 cool season broad leaf plants + 2 warm season grasses + 2 warm season legumes + 2 warm season broad leaf plants + 2 root crops (tillage radish, turnip, or forage beet).  Drill or broadcast at least 20 pounds seed per acre.

Life Underfoot:     Most farmers think in 2 dimensions (length and width).  Rarely considered is the third dimension, depth.  The soil depths abound with life, and this ecology responds explosively to edge effect management.  Roots need oxygen in order to absorb water and nutrients.  (This is why plants wilt in flooded fields).  Most agricultural soils are oxygen deficient.  Gooey clays, plow pans = compacted layers, and tight subsoils starve soil organisms of essential air.  Impermeable soils also restrict moisture; needed water runs off the land instead of soaking into the earth.  Moisture and oxygen stress greatly reduce crop yields.

Vertical Tillage:     The conventional solution to compacted soils is deep tillage = subsoiling.  Unfortunately, this procedure requires expensive plows and enormous amounts of horse power = BIG tractors or bulldozers.  The effects are also temporary and must be repeated every few years.  A better solution is vertical tillage = verti-tillage = slicing thin crevices into the soil with minimum disturbance to surface vegetation.  Each slit is 3/4 inch wide, 12 to 16 inches deep, and 2 feet apart.  Verti-till fields along the contour for the first 4 or 5 years until soils develop their full potential.  Thereafter, till every few years as needed.  Each slit is like a high-capacity artery supplying water and air directly to the subsoil.  Plant roots flourish along crevice edges.  More roots = higher yields.

Vertical Mulching:     In areas with poor soils, torrential rains, steep slopes or frequent droughts, use vertical mulching to bring problem fields into high production.  Vertical mulching = drilling deep holes or digging deep trenches along the contour or perpendicular (at right angle) to water flow across the land.  Fill the holes or trenches with manure, compost, stable bedding, wood chips, tree bark, coarse peat moss, straw, leaf mold, spoiled hay or similar organic matter.  The holes and trenches conduct air and water deep into the soil so plant roots thrive.  100% to 800% yield increases are frequent, especially in arid lands or difficult soils like heavy clays or stony ground.

Soil Engineering:     For best results use mechanical trenchers and rotary post hole diggers to prepare land for vertical mulching.  Excavations should be as deep as practical, 3 to 8 feet is ideal.  Best holes are 8 to 16 inches in diameter; trenches should be 4 to 12 inches wide.  Space holes and trenches as convenient (as close as 40 inches = 3.3 feet, or as wide as 13.3 to 26.6 feet = 4 to 8 rows 40-inches apart.  Even trenches spaced 50 feet = 15 rows 40-inches apart can dramatically improve yields).  Exact spacing is not essential as more holes and trenches can be dug next season or periodically as time and resources permit.  (Vertical mulching is a LONG TERM soil management technology).

For transplanted crops like tomatoes, peppers, cabbage and melons, space trenches or holes accordingly then fill with compost, potting soil or similar media (1 sand : 1 topsoil : 1 peat is a good mix).  Plant roots quickly grow deep into the subsoil and resulting crops are nearly drought-proof.

If organic matter is scarce or expensive, fill holes or trenches with river sand, river pebbles, or river cobblestones.  (This technique works especially well when trenches are placed directly under permanent tractor paths to prevent soil compaction).  Tree prunings, grain straw, spoiled hay, and green chop or silage make adequate substitutes for compost when treating large fields.  (Any medium will work as long as it has many large holes that allow unrestricted entry of air and water.  In extremis, leave holes and trenches empty; they will eventually fill themselves with eroded soil and plant litter).  Each hole or trench is a high-volume conduit channeling air and water deep into the soil.  Every excavation is another edge between different ecologies and life will proliferate along these boundaries.  More air = more roots = more absorption = higher yields.

Tillage Crops:     In the 1500’s farmers without draft animals used deep rooted crops to “plow” their fields.  They did not have much choice because the alternative was digging fields by hand — a lengthy and laborious task which severely limited the amount of land that could grow food.  It was much easier to sow stock beet = mangle-wurzel (Beta vulgaris) or forage radish (Raphaus sativus variety longipinnatus) and let the plants break up the earth.  Modern farmers call these specialized plants tillage crops or bio-drills because of their ability to penetrate subsoils to depths of 6 feet = 2 meters or more.

The advantage of tillage crops is that they leave tens of thousands of holes (vertical edges) across a field and each hole is a pipeline carrying water and air direct to waiting roots.  Soil life proliferates around these breathing tubes resulting in better plant growth.  For example, average yields increase 15% when upland rice follows a forage radish tillage crop.  As an added benefit, soil erosion is nearly zero because rainwater soaks into the sponge-like earth rather than running off the land.

Agroforestry:     Sunlight is very intense — it contains much more energy than any one crop can absorb.  Thus, it is possible to stack multiple crops on top of each other so that more energy is collected and higher yields obtained.  For example:  Pole Apples grow mostly straight up with very little horizontal spread.  Rows of pole apples planted in a hay field yield 2 crops (fruit and forage) with very little competition between plants.  Edge effects increase dramatically because vertical space is used more efficiently; taller growing fruit trees and ground hugging forage plants are different micro-ecologies.  There are many possible combinations of tree crops and field crops:  Mulberry trees in pasture and English walnut trees in wheat fields are just two examples.  Walk about your farm and look for ways to use vertical spaces = create more edges to increase biodiversity and farm profits.

Water Is Life:     Most crops are water stressed at some point in their growth, usually at critical times like germination, flowering, or fruit development.  The solution to inadequate soil moisture is water management, either active (irrigation) or passive (water conservation).  To ensure ample water supply, every farm should have a watershed management plan; the goal is to trap every drop of water that falls on the land.

The best way to develop a watershed management plan is to don your poncho and walk about the farm while it is raining.  The harder it rains the more you will learn.  Watch where the water comes from and where it goes.  Any place water flows across the land is an EDGE that requires management.

For example, water running down a gully to a stream is wasted moisture = reduced plant growth = lost profits.  Solution:  Top seed low growing clovers to halt water before it runs off your corn field; then build weirs to stop any water that reaches the gully.  (Each row of corn in clover is an edge between different species; every gully and weir is an edge defining separate micro-environments).  Plant useful trees and shrubs behind each weir to take advantage of trapped rainfall.  Stand at the bottom of the gully and watch the results.  If any water escapes then more aggressive management = more edges are needed.

Remember:  The goal of every watershed management plan is zero runoff.  More edges = more trapped water = more life.

Hungry Mouths:     Agriculture is a dirty business that generates substantial pollution.  Smart farmers use edge effects to clean up the mess.  The principle is simple:  For every pollutant there are a host of organisms waiting to eat it.  The trick is to bring food and hungry mouths together; this is best accomplished by creating ecological edges where life thrives.  More edges = more life = more pollutants eaten.

For example, stockyard effluent needs cleaning:  Run dirty water through a sedimentation pond (8 feet deep), aeration lagoon (3 feet deep), filtration marsh (6 inches deep), then into a fish pond or irrigation reservoir.  Result:  Potable water without a costly waste water treatment plant.  4 separate environments each with many edges and different ecologies filled with hungry life forms.  What does not get eaten is absorbed.  Plants, fish and plankton flourish.  Germs and parasites die.

Problem:  The stream running through your property is polluted by an upstream hog farm.  Solution:  Build artificial rapids.  Erect a series of weirs the entire length of the stream.  Each weir is an edge supporting a unique ecology of organisms that thrive in high-oxygen water.  Excess nutrients and harmful microbes are consumed.  1 mile of rapids has the cleansing power of a modern sewage treatment plant.

Mother Nature is quite capable of clearing up the worst pollution; all she needs are places to work.  Provide edges and biology will supply the magic.  More edges = more cleaning power.

Heat On Demand:     Problem:  The fruit industry is 300 miles south of your farm, but you want to grow grapes and peaches.  Solution:  Use edge effects to create favorable micro-climates for trees and vines.  Walk about your farm and wherever there is sufficient catchment area build a pond.  Each pond does not have to be large, but the cumulative effects will be significant.  Water holds lots of heat and each pond acts like a radiator to warm its local environment.  Plant fruit crops on the southeast side of ponds and lakes where temperatures are most favorable.  Every pond is an edge, a boundary between separate ecologies each with its own micro-climate.  Mulch trees and vines with heat-retaining rocks = more edges.  Combining water and rocks can raise canopy temperatures by 5 degrees or more.  A few degrees are all that is needed to protect blossoms from frost.

Linear Agriculture:     Edge effect farming is all about surfaces = boundaries between different ecologies.  Creating more edges fosters more life which in turn enables the environment to support more life.  As life abounds the local ecology grows stronger and more stable.  Crops become more resistant to insects and more resilient to adverse weather.  Result:  Farmers make more money.

Would You Like To Know More?     Please contact the Author directly if you have any questions or need additional information about edge effect agriculture.

Eric Koperek = worldagriculturesolutions@gmail.com

About The Author:     Mr. Koperek is a plant breeder who farms in Pennsylvania during the summer and Florida during the winter.  (Growing two generations each year greatly speeds development of new crop varieties).