BIOLOGICAL AGRICULTURE IN TEMPERATE CLIMATES

A Seminar at Cornell University, Monday 19 November 2018. Sponsor: Norman Uphoff, Professor Emeritus, International Programs SRI Project, College of Agriculture and Life Sciences. Guest Speaker: Eric Koperek = erickoperek@gmail.com. Website: http://www.worldagriculturesolutions.com

My ancestors were literally dirt poor = without soil. They farmed abandoned quarry land. Over the course of 8 centuries they created 10 to 15 feet of topsoil = 1/5 to 1/4 inch yearly. This is how they did it:

BIOLOGICAL AGRICULTURE PRINCIPLES

Copy Nature: “Gardeners are the best farmers”. Observe nature closely then mimic what you see. How do you grow your garden? What do you see in the forest? Copy this in your fields. The idea is to combine biological processes with labor efficient agricultural machinery.

Keep Fields Green: Fields should be covered with growing plants 365 days yearly. Do not waste sunlight. The goal is to produce the maximum possible amount of organic matter per square foot each year. More plants = more organic matter = increased populations of soil “critters” = faster nutrient cycling = higher crop yields. “Roots in the ground all year round”.

No Soil Disturbance: Avoid plowing, disking, harrowing, and cultivation whenever practical. Transplant crops or surface sow using pelleted seed and no-till equipment. Tillage kills earthworms and destroys fungal networks = lower crop yields. “Good farmers grow fungi. The fungi grow the crops”.

Keep Soil Covered: Use living mulches, dead mulches, or growing crops to keep fields covered year-round. Control weeds with Mulch-In-Place. Never leave soil bare not even for a single day. Harvest and replant fields the same day or try relay planting: Sow the following crop several weeks before the first crop is harvested.

Worm Farming:  Use earthworms (Lumbricus terrestris) to till and fertilize fields. Earthworms are the key to biological soil management. Worms eat their weight in soil and organic matter daily. One million earthworms per acre = 1 ton of worm manure daily. More worms = more nutrients = higher crop yields. “Feed the worms and the worms will tend your crops”.

Increase Biological Diversity: Grow many crops rather than one crop. Plant polycultures whenever practical. Multiple crops diminish risk of crop failure. “Life breeds life”. More crops = more biological activity = higher yields.

Watershed Management: Agriculture is all about water management. Mind the water and everything else will fall in place. The goal is zero runoff = trap every drop of rain and flake of snow that falls on the land. Store water for dry seasons. Build ponds wherever possible. Irrigate whenever practical. Water is the best investment a farmer can make. One drought pays for an irrigation system.

Biological Nitrogen Fixation: Grow your own fertilizer. Rotate nitrogen fixing cover crops with cash crops. Plant small grains and clover together. Seed maize into roller-crimped Red Clover (Trifolium pratense). Transplant vegetables into Dutch White Clover (Trifolium repens). Topseed cash crops with low growing legumes. Include 50% legumes in pasture and cover crop mixes.

Increase Edge Effects: Divide big fields into smaller fields. Plant hedgerows and windbreaks. Mix fields with pastures, orchards, hay fields and forest. Grow unrelated crops in narrow strips = strip cropping. Plant borders and head rows with clover and insectary crops. The idea is to attract and maintain large populations of beneficial insects. “The good bugs eat the bad bugs”.

Plant Multi-Species Cover Crops: Mixtures of plants repel insect pests, fix more nitrogen, better resist drought, and produce more organic matter than plants grown alone. Plants in mixtures cooperate with each other sharing water and nutrients through fungal networks. Multi-species cover crops can fix more than 100 pounds of nitrogen per acre; this nitrogen is not accounted by conventional soil tests. Mixed species cover crops promote maximum earthworm populations, up to 8 million worms (8 tons) per acre = 184 worms per cubic foot of topsoil.

Long Rotations Increase Yields: 7-year rotations best control soil diseases and insect pests. Never follow similar crops in sequence (oats & wheat; carrots & potatoes; lettuce & spinach). Never follow crops in the same botanical family (tomatoes & peppers; pumpkins & squash). Never follow plants sharing common pests or diseases.

Grass Crops Make Deep Soils: Integrate perennial grass crops into field rotations. This is called Ley Farming. Perennial pastures and grazing animals promote large earthworm populations = 1 ton per acre = 1 million worms per acre = 23 worms per cubic foot of topsoil = 120 miles of earthworm burrows per acre. Worms produce vast amounts of castings = manure, more than needed for any commercial crop.

Integrate Animals and Crops: Use grazing animals to fertilize fields. Practice Rotational Grazing, Mob Grazing, Stomp Seeding, Cattle Penning, and Folding = Yarding to improve fields and increase yields. Sustainable agriculture is difficult to achieve without farm animals.

Plant Weeds and Crops Together: Reserve 5% to 10% of farm for native weeds. Plant weeds in narrow strips within and around fields. Grow orchards and vine crops in weeds. Weeds provide food, shelter, and alternate hosts for beneficial insects that protect cash crops. “Weeds are the shepherds of the garden”. More weeds = less insect pests.

Plant Flowers with Crops: Most beneficial insects have small mouth parts and so they need tiny flowers on which to feed. Healthy farms grow many small-flowered plants to encourage maximum populations of helpful insects. For best results plant flowers and weeds next to crops needing protection. Sow flowers around fields, orchards, vineyards — anywhere there is open space. More flowers = less pests.

Making Sense of It All

Biological agriculture requires patience. Converting a field from conventional chemical agriculture usually requires 12 to 15 years before the soil is healthy enough to sustain commercial yields without added fertilizer.

Active biological soils easily produce 160 bushels (8,960 pounds) of maize per acre without plowing, fertilizer, herbicides, or cultivation. Irrigated fields can exceed 200 bushels (11,200 pounds) per acre.

On biologically managed soils, most Japonica rice varieties yield 3.5 ounces of grain per plant = 9,528 pounds per acre when plants are direct seeded 12 inches equidistantly on drip irrigated fields. (Indica rice varieties yield less, about 1.5 ounces of grain per plant = 4,083 pounds per acre).

Related Publications:     Crop Rotation Primer; Biblical Agronomy; The Twelve Apostles; Polyculture Primer; Strip Cropping Primer; Worm Farming; Managing Weeds as Cover Crops; Intensive Rice Culture Primer; Weed Seed Meal Fertilizer; Earthworm Primer; Planting Maize with Living Mulches; Living Mulches for Weed Control; Crops Among the Weeds; Forage Maize for Soil Improvement; Forage Radish Primer; The Edge Effect; Coppicing Primer; and Rototiller Primer.

Would You Like To Know More? Please contact the Author directly if you have any questions or need more information about Biological Agriculture.

Eric Koperek. Office Address: 413 Cedar Drive, Moon Township, Pennsylvania, 15108 United States of America. Cellular Telephone Number: 412-888-7684. E-Mail Address: erickoperek@gmail.com. Website Address: http://www.worldagriculturesolutions.com

About The Author: Mr. Koperek is a plant breeder who farms in Pennsylvania during summer and Florida during winter. (Growing 2 generations yearly speeds development of new crop varieties).

 

 

 

 

 

 

Advertisement

STRIP CROPPING PRIMER

What Is It?     Strip cropping is a natural way to control pests without using insecticides.  Unrelated crops are grown in narrow strips to increase biodiversity and maximize edge effects.  Beneficial insects flourish and eat harmful bugs.

The Edge Effect:     Life increases proportionately to the boundary area between different environments.  For example, a meadow and a hedgerow are unique ecologies.  Each has its own mixture of species.  There is an abundance of food and shelter along the edge where the two environments meet.  Interaction along this edge promotes large populations and increased diversity.

Ecology Math:     Square fields have less edge than rectangular fields.  For example, a square field measuring 300 feet on each side has 1,200 feet of edge (300 feet per side x 4 sides = 1,200 feet).  Take the same field and stretch it into a rectangle 100 feet wide x 900 feet long.  Both fields have the same area (90,000 square feet) but the rectangular field has 2,000 feet of edge (900 + 900 + 100 + 100 = 2,000 feet).  The perimeter of the rectangular field is 40% larger than the square field.  More edges = more food and habitat = more species and larger populations.  Hunters understand this instinctively.  Long, narrow fields have more browse (twigs and buds) along their perimeter.  More hedgerow = more browse = more food = more deer.

Agricultural History:     Farming in the Middle Ages was not easy.  Wood plows were heavy and difficult to turn.  The solution was to make long, narrow fields.  Long fields required fewer turns.  Each field was one “furrow” long = 1 furlong = 1/8th mile = 220 yards long x 22 yards wide = 4,840 square yards = 1 acre.  A man with a team of oxen took a whole day to plow 1 acre.  Adjacent fields were planted to unrelated crops, for example:  Peas, Wheat, Turnips, and Pasture.  Narrow strips and diverse crops increased edge effects supporting large populations of beneficial insects.  The good bugs ate the bad bugs.

Agroecology:     Wind the clock back to when knights went clanking around in armor.  Northwest France (Normandy) was divided into thousands of little fields surrounded by hedgerows.  Each field measured about 1 1/4 acres.  This mixture of small fields and hedgerows is called bocage.  The bocage landscape contains hundreds of miles of biological edges = vast populations of predatory and parasitic insects.  Modern farmers in the bocage rarely have pest problems.  Significant outbreaks occur about once every 20 years and are mostly self-correcting without insecticides.

“Altering the geometry of fields costs nothing and can reduce or eliminate pesticide use.”

Practical Polyculture:     Plant 4 rows of corn then 4 rows of soybeans.  Repeat this pattern across fields and farms following land contours.  Result:  Pests go down 50% and corn yields go up 15% (because of increased light penetration into the crop canopy).

  • Alternate tall and short crops.  Insect pests do not like fields with mixed light and shade.  Example:  Sunflowers — Alfalfa — Barley — Lentils
  • Adjust strip widths to fit planting and harvesting equipment.  Try to keep strip widths as narrow as mechanically practical.  Narrow strips better control insect pests.  Plant strips no wider than 200 feet to encourage rapid movement of beneficial insects into fields.  Example:  Hay (150 feet) + Soup Beans (75 feet) + Safflowers (75 feet)
  • Plant adjacent strips to unrelated crops.  Plant as many different crops as economically practical.  Diverse crops reduce insect pests and spread market risk.  Example:  Wheat — Peas — Flax — Soy Beans — Barley — Alfalfa
  • Seed grains and legumes together.  Legumes fix nitrogen, protect soil and control weeds.  Example:  Winter Wheat + Dutch White Clover  — or —  Field Corn + Red Clover  — or —  Oats + Forage Peas  — or — Winter Rye + Winter Vetch
  • Alternate legumes with non-legumes.  Legumes improve soil, feed earthworms and attract beneficial insects.  Example:  Canary Seed — Lentils — Barley — Soy Beans — Wheat — Field Peas — Flax — Alfalfa
  • Plant windbreaks not closer than 50 feet nor farther than 150 feet apart.  Windbreaks increase biological diversity and help crops grow better.  Windbreaks do not have to be great belts of trees.  A single row of shrubs or perennial pampas grass will slow wind and increase crop humidity.  Example:  Trees (25 feet wide) + Cropland (150 feet wide)  — or —  Shrubs (10 feet wide) + Cropland (100 feet wide)  — or — Pampas Grass (3 feet wide) + Cropland (50 feet wide)
  • Alternate strips of native weeds with cropland.  Space weed strips not farther than 200 feet apart.  Weeds should comprise at least 5% to 10% of total cropland.  Native weeds are essential to provide food and shelter for beneficial insects.  Example:  Weed Strip (15 feet) + Cropland (135 feet)
  • Plant several varieties of the same crop together.  Choose varieties that have the same harvest date.  Varieties can be mixed or drilled in separate rows.  Alternatively, plant similar species that ripen together.  For example:  Winter Wheat + Winter Rye.  Genetic diversity reduces the chances of crop failure due to weather, disease or insects.

Try This On Your Farm:     Divide big fields into narrow strips and watch your pest problems go away.  Strip cropping combines the biological advantages of polycultures with the economic efficiency of farm machinery.

Related Publications:     Crop Rotation Primer; Biblical Agriculture; The Twelve Apostles; Maize Polyculture Trial 2007-2016; Managing Weeds as Cover Crops; Trash Farming; No-Till Hungarian Stock Squash; Planting Maize with Living Mulches; Living Mulches for Weed Control; 2012 Tomato and Sweet Potato Polyculture Trial; Crops Among the Weeds; and The Edge Effect.

Would You Like To Know More?     Contact the Author directly if you have any questions or need more information about polycultures or strip cropping.  Please visit:  http://www.worldagriculturesolutions.com  — or — send your questions to:  Eric Koperek, Editor, World Agriculture Solutions, 413 Cedar Drive, Moon Township, Pennsylvania, 15108 United States of America  — or — send an e-mail to:  http://www.worldagriculturesolutions.com

About The Author:     Mr. Koperek is a plant breeder who farms in Pennsylvania during summer and Florida during winter.  (Growing 2 generations yearly speeds development of new crop varieties).

TRASH FARMING

“You got it plum backwards:  You’re supposed to KILL the weeds and GROW the crops”.  Contrarian that I am, I plant weeds and let the crops fend for themselves.

My neighbors call it weed farming or trash farming.  (Less charitable folks say I’m lazy or just plain mental).  I call what I do common sense agronomy.  Planting in weeds saves lots of money.  You should try it.

Most farmers think weeds are enemies that should be exterminated by any means possible.  I take a more balanced view:  Weeds are valuable agricultural resources if properly managed = you have to get off your tractor long enough to think of weeds as an ally.  My spray-by-the-calendar neighbors don’t agree with me but my weedy fields are highly profitable. Their farms are up for auction.

A weed is a plant growing where it is not wanted.  The key to intelligent agriculture is to grow weeds where they are needed.  Here are some ways that weeds can help fill your bank account:

–>     WEEDS ARE GOOD ORGANIC FERTILIZER.     I ran a lawnmower across a typical meadow (8 grasses + 23 broad leaf weeds = 31 species) and sent the clippings off for analysis:  1.00% Nitrogen : 0.27% Phosphorous : 1.10% Potassium by weight = 20 pounds Nitrogen + 5.4 pounds Phosphorous + 22 pounds Potassium per ton.

Compare this with cow manure from my neighbor’s dairy:  0.5% Nitrogen : 0.15% Phosphorous : 0.40% Potassium by weight = 10 pounds Nitrogen + 3 pounds Phosphorous + 8 pounds Potassium per ton.

Fresh green weeds contain approximately double the nutrients of dairy cow manure.  A dense field of weeds 3 feet high yields about 2.5 tons of green manure (stems and leaves) ~ 50 pounds Nitrogen + 13.5 pounds Phosphorous + 55 pounds Potassium per acre.  Green weeds rot fast so most of these nutrients are quickly available to crop plants.

How to Green Manure a Field:     First, cut weeds with a flail, rotary, or sickle bar mower, or use a forage chopper.  Next, use a rear-mounted rototiller, moldboard or disk plow to till the chopped foliage into the soil.  RULE:  Always mow before plowing!  Chopped plants rot faster so crop roots absorb nutrients sooner.  Last, seed or plant field immediately = the same day.  Never leave the soil bare, not even for a single day.  Naked soil is wasted dirt.  Keep the ground covered with growing plants at all times.

Chop-And-Drop:     How do you “green manure” a no-till field?  Answer:  Mow the cover crop as close to the soil surface as possible and leave the chopped vegetation where it falls.  Use a rotary mower, flail mower, forage chopper, or common lawnmower if you want the cover crop to decompose quickly (to feed a following crop or clear a field for planting).  Use a sickle bar mower or roller-crimper for Mulch-In-Place planting.  Timing is important:  To kill a cover crop mow when plants start flowering or begin setting seeds.  Late planted annual cover crops can be left standing until killed by frost; standing vegetation traps snow over winter.  Fall oats are a good crop for this purpose.  Winter killed oats protect soil but do not obstruct spring planting with conventional equipment.

To green manure a field without machinery, use animals to stomp the cover crop.  Erect temporary fencing and “Mob Graze” the field.  Animals should be “well crowded” together.  Ideal stocking density = 680 to 1,210 Animal Units per acre.  (1 Animal Unit = 1,000 pounds live weight).  For example:  680 beef cattle per acre = 1 cow for every 8 x 8 feet = 64 square feet per animal.  1,210 beef cattle per acre = 1 cow for every 6 x 6 feet = 36 square feet per animal.  Keep animals confined until they eat the top 1/3 of the foliage then move herd to fresh pasture.  Plant stomped cover crop the same day with no=till equipment.  Alternatively, broadcast grain into standing cover crop then immediately mob graze field.  This is an old Roman agronomic practice called stomp seeding.

–>     WEEDS ARE HIGH QUALITY MULCH.     Fight fire with fire.  Use weeds to smother weeds.  An 8-inch blanket of cut weed mulch provides 95% or better weed control for 6 to 8 weeks during the growing season.  That is all the time you need to get your crop up and growing.  Once your plants are well established any weeds that poke above the crop canopy won’t matter.  The crop itself suppresses most weeds.  Peek under the leaves and you will see little weeds lurking in the shade.  These tiny plants lost the competition for sunlight.  As long as your crop continues to grow, your fields will remain mostly weed free.

Mulch-In-Place:     Find the weediest field possible.  Dense, luxuriant, rank growth 6 feet high is best = about 4 tons of biomass (stems and leaves) per acre.  Cut weeds with a sickle bar mower or flatten with a roller-crimper.  Seed or transplant directly through the mulch with no-till equipment, or sow by hand.  If desired, you can immediately top seed field with a low growing nitrogen fixing legume like Dutch White Clover (Trifolium repens), Crimson Clover (Trifolium incarnatum), or Sub Clover (Trifolium subterraneum).  The tiny clover seeds fill any holes in the mulch and provide useful biodiversity.  (If you don’t have a weedy field, sow Winter Rye = Secale cereale at 3 bushels per acre then mow or roll when 6 feet high or when seeds reach the soft dough stage.  Cereal rye grows fast like a weed and yields 4 to 5 tons = 8,000 to 10,000 pounds of long straw mulch per acre.  Alternatively, seed a high biomass crop like Sudan Grass = Sorghum sudanense or Forage Maize = Zea mays).

Lawnmower Farming:     You can run a 25 acre ~ 10 hectare commercial vegetable farm with nothing other than a common lawnmower.  (For larger areas use a riding lawnmower = lawn tractor).  Find the weediest field possible.  Mow a strip where you want to plant your crop.  Roll irrigation tape down the row.  (The idea is to water the crop rather than the entire field).  Set your transplants then mulch heavily with cut weeds.  Apply a circle or collar of green mulch 1 foot = 12 inches thick around each plant.  This is a form of sheet composting = the weeds rot and release nutrients to feed your crop.  (It’s ok to use synthetic fertilizers but these are expensive.  A 40 pound bag of 10-10-10 = 10% Nitrogen + 10% Phosphorous + 10% Potassium costs $17.12 at my local farm store.  Why spend 43 cents per pound for chemical fertilizer when weeds cost nothing)?

Weed mulches protect and feed earthworms = Lumbricus terrestris.  Earthworm casts = manure fertilize the soil.  Weed fields fallowed = untilled for 7 years typically have 1 ton = 1 million earthworms per acre ~ 23 earthworms per cubic foot of topsoil.  1 million earthworms per acre produce 2,000 pounds = 1 ton of worm casts each DAY during the growing season.  That is an enormous amount of free organic fertilizer ~ 150 to 180 TONS per acre of worm manure in a typical 5 to 6 month growing season ~ 6 to 8 pounds of worm casts per square foot (distributed from the surface through the entire soil column about 6 feet deep).

Earthworms also biologically till the soil so air and water penetrate deep into the subsoil.  Plant roots follow worm borrows 5 to 6 feet underground where the soil stays moist = crops are nearly drought proof.  (My weed fields average 902 MILES of vertical earthworm burrows per acre).  A hundred-year rainstorm (2-inches per hour) falling on a fallow weed field has almost no runoff = zero soil erosion.  Rain sinks into the land like water through a colander.  Underground water keeps my crops growing while my neighbors’ fields wilt.

Earthworm populations are directly proportional to the amount of available food = organic matter.  Apply more mulch and more worms will come.  Space rows widely so you have sufficient weeds to cut for mulch.  (On very large farms use a forage chopper to deposit chopped weeds into convenient windrows.  Set transplants down the windrows).  RULE:  Cut weeds only to clear rows for planting or to harvest for mulch.  Leave remaining weeds standing to maintain wide environmental diversity.

If you don’t have any weedy fields, plant mixed species cover crops.  The goal is to imitate the broad ecological diversity of a naturally weedy field.  Include 50% legume seed in the mix because earthworms need protein in their diet.  Earthworm populations double on fields of clover versus fields of grass.  More legumes = more earthworms = more free fertilizer = more money in your bank account.

If you can’t afford cover crop seed go to the nearest grain elevator and ask for elevator screenings.  These are usually free or cheap and contain many weed seeds.  Haul as many tons as practical; you will need every pound of weed seed obtainable.  Sow weeds generously = with wild abandon.  Your neighbors will think you daft, but it really does pay to plant weeds (especially on poor, eroded, or barren fields).  Run the remaining elevator screenings through a roller mill to make weed seed meal.  Weed meal is high quality organic fertilizer; use it just like cottonseed meal or other expensive soil amendment.  Apply weed seed meal liberally because it won’t burn plant roots.

Once weed fields are planted they require little or no attention = the crops grow themselves.  Mulch protects young transplants for the first 3 to 6 weeks until they put down roots.  Once crops are well established they will outgrow or overwhelm most weeds.  This is especially true for vigorous plants like tomatoes, peppers, and vine crops:  Pumpkins, squash, gourds, sweet potatoes, cucumbers, and melons.  Vine crops tolerate light shade and easily climb over weeds 5 to 6 feet tall.  I always get my best melons from the weediest fields.  On rare occasions weeds may grow too densely around a pepper or tomato plant.  Thin offending weeds with pruning shears.

Weed Seed Meal:     Seeds of most plants make good fertilizer.  The trick is to mill = grind seeds into a coarse meal or flour so they do not sprout.  If weed seeds are not available, substitute any type of waste or spoiled grain, for example, wet or dry brewer’s grains.  There is no standard analysis for weed seed meal; nutrient content varies depending on species and proportion which change by locality and season.  It is good practice to test weed seed samples yearly so fertilizer application rates can be adjusted as needed.  Below are some average nitrogen (N), phosphorous (P), and potassium (K) values for rough calculations.  Note:  lb = pound.  1 pound = 0.454 kilogram.  1 American ton = 2,000 pounds = 908 kilograms = 0.908 metric ton.  1 metric ton = 1 megagram = 1,000 kilograms = 1,000,000 grams = 2,200 pounds = 1.1 American tons.

Wheat, Broken (Kansas 2011):     2.00% N : 0.85% P : 0.50% K = 40 lb N + 17 lb P + 10 lb K per ton

Weed Seed Meal (Saskatchewan 2015):     3.02% N : 0.56% P : 0.77% K = 60 lb N + 11 lb P + 15 lb K per ton

Weed Seed Meal (Hungary 2013):  2.7% N : 0.90% P : 0.90% K = 54 lb N + 18 lb P + 18 lb K per ton

Rice, White Broken (California 2016):  1.00% N : 0.21% P : 0.27% K = 20 lb N + 4 lb P + 0 lb K per ton

Rice Hulls = Husks (Philippines 2014):  1.9% N : 0.48% P : 0.81% K = 38 lb N + 9 lb P + 18 lb K per ton

Rice, Brown (California 2016):  1% N : 0.48% P : 0.32% K = 20 lb N + 9 lb P + 6 lb K per ton

Rice Bran (India 2015):  4.00% N : 3.00% P : 1.00% K = 80 lb N + 60 lb P + 20 lb K per ton

Oats, Broken (New York 2010):  2.00% N : 0.80% P : 0.60% K = 40 lb N + 16 lb P + 12 lb K per ton

Flaxseed = Linseed Meal (Manitoba 2008):  5.66% N : 0.87% P : 1.24% K = 113 lb N + 17 lb P + 24 lb K per ton

Dent Corn, Spoiled (Maryland 2014):     1.65% N : 0.65% P : 0.40% K = 33 lb N + 13 lb P + 8 lb K per ton

Cowpeas, Broken (California 2014):  3.10% N : 1.00% P : 1.20% K = 62 lb N + 20 lb P + 24 lb K per ton

Cotton Seed, Whole (USDA 2015):  3.14% N : 1.25% P : 1.15% K = 63 lb N + 25 lb P + 23 lb K per ton

Cotton Seed, Pressed (USDA 2015):  4.51% N : 0.64% P : 1.25% K = 90 lb N + 12 lb P + 2b lb K per ton

Cotton Seed Meal (Egypt 2012):  6.6% N : 1.67% P : 1.55% K = 132 lb N + 33 lb P +31 lb K per ton

Castor Beans, Pressed (Egypt 2012):  5.5% N : 2.25% P : 1.125% K = 110 lb N + 45 lb P + 22 lb K per ton

Brewer’s Grain, Wet (Pennsylvania 2012):  0.90% N : 0.50% P : 0.05% K = 18 lb N + 10 lb P + 1 lb K per ton

Brewer’s Grain Dry (Pennsylvania 2012):  4.53% N : 0.47% P 0.24% K = 90 lb N + 9 lb P + 4 lb K per ton

Beans, Soup Broken (New York 1988):  4.0% N : 1.20% P : 1.30% K = 80 lb N + 24 lb P +26 lb K per ton

Barley, Spoiled (Manitoba 2011):  1.75% N : 0.75% P : 0.50% K = 35 lb N + 15 lb P + 10 lb K per ton

For slow release fertilizer mill weed seeds into coarse flakes or meal.  Grind weed seeds into powder for fast acting fertilizer.

Calculate application rates according to soil test recommendation for desired crop.  Minimum application rate is 1 ton = 2,000 pounds per acre ~ 5 pounds or 1 gallon per 100 square feet ~ 2 Tablespoons or 2/3 ounce per square foot.  Apply 1 pound of weed seed meal for every 25 feet of row or trench.  Mix 1/2 to 1 cup in each bushel (8 gallons) of potting soil.  To fertilize trees and bushes, apply 1 pound or 1 1/4 quarts of weed seed meal for every inch of trunk or stem diameter.  Spread meal from trunk or stem to drip line = farthest extent of branches.

Average density of weed seed meal = 0.3125 to 0.40 scale ounce per Tablespoon ~ 5 to 6.5 scale ounces per cup ~ 20 to 25.6 scale ounces per quart ~ 80 to 102.4 scale ounces per gallon ~ 5 pounds to 6 pounds 6.4 ounces per gallon ~ 40 to 51 pounds per bushel (8 gallons).  1 ton = 2,000 pounds weed seed meal = 40 to 50 bushels.

For example:  200 bushel per acre corn crop requires 200 pounds of nitrogen per acre.  200 pounds N divided by 54 pounds of nitrogen per ton of weed seed meal = 3.70 ~ 4 tons of weed seed meal needed per acre of corn.  Weed seed meal can be tilled into the earth by conventional plowing, broadcast on soil surface, side banded down rows, or drilled into furrows or trenches.

For feeding earthworms broadcast weed seed meal (1 ton per acre or 2 Tablespoons per square foot) on soil surface.  Reapply throughout the growing season when meal is no longer visible.

–>     WEEDS PROVIDE FREE BIOLOGICAL INSECT CONTROL.     I used to work for a cannery company.  I have dreadful memories of being bombed by crop dusters.  I would run for my truck, slam the door and stomp on the gas pedal.  The toxic mist really was that lethal.  Any human caught in the open would spend weeks in hospital and years twitching oddly.  Of course, the cabbage loopers took only 2 or 3 seasons to develop immunity to the toxin.  Then it was replaced with something even more poisonous.  Never again!  I refuse to become yet another ghastly statistic.  Just as stubbornly, I won’t buy something I don’t need.  Farming is all about cheap.  Margins are slim (especially for commodity crops) so a jug of synthetic chemical per acre can make all the difference between hanging-on-by-our-fingernails profit and loss of the family homestead.  Consequently, I cross all agricultural chemicals off my shopping list.  I’m not a “tree hugger” just ruthlessly frugal.  My family has farmed the same land for over 800 years.  I’m not going to be the one who fails.

Pests Be Gone!      Weeds are the poor man’s wildflowers.  Sow weeds just as you would wildflowers to provide food, shelter, and alternate hosts for beneficial predatory and parasitic insects.  For best results, reserve at least 5% of cropland for weeds.  Seed every 20th row with weeds.  Plant a strip of weeds around each field, vineyard, and orchard.  The trick to biological insect control is to grow weeds in close proximity to crops needing protection.  Serious insect problems usually mean a farm does not have enough wild plants.  Spatial orientation is important:  Weeds on one side of a farm will not protect tomatoes on the opposite side.  Plant tomatoes and weeds together = few hornworms.

Strip Cropping:     Plant crops in long narrow strips 4 to 16 rows wide (depending on the size of planting and harvesting equipment).  Long fields increase mechanical efficiency = fewer turns.  Try to keep strips as narrow as mechanically practical.  Narrow strips maximize biological edge effects and increase light penetration into crop canopy.  More edges = less pests.  More sunlight = more photosynthesis = higher yields.  Run strips across fields and farms following land contours.  Plant adjacent strips with unrelated crops to increase biological diversity = more food and shelter for beneficial insects.  If weed seed is unavailable or wildflowers too costly, plant mixed species cover crops to simulate weed populations.  Thomas Jefferson used buckwheat (Fagopyrum esculentum), turnips (Brassica rapa subspecies rapa), and winter vetch (Vicia villosa) = small flowered plants ideal for predators and parasites with tiny mouth parts.  A diligent program of crop rotation, strip planting, and weed farming usually keeps pest populations from rising to harmful levels.

–>     WEEDS ARE POTENT INSECTICIDES.     Over millions of years weeds have evolved elaborate chemical defenses against bugs.  Most weeds have only 1 or 2 minor pests; many wild plants are immune to just about everything.  When bugs get out of hand most infestations can be controlled by spraying with weed tea = a simple infusion of fresh weeds in water.  Find any weeds not bothered by the pest needing control.  Collect a large quantity of plants equal to the volume of water needed for spraying.  Chop weeds with a shredder, hydro-mill, or household blender.  Alternatively, crush weeds in a roller mill or laundry wringer.  Soak milled weeds in water at least 1 hour but not more than 8 hours or mixture may ferment.  Strain before use then add a commercial surfactant so insecticide spreads over and sticks to crop leaves.

If necessary, dilute weed tea concentrate with clear water to make up spray tank volume.  One application is usually enough to control most pests.  If infestation continues spray again or increase insecticide concentration by brewing equal weights of weeds and water (1 pound of weeds for each pint of water).  The forests around me abound with wild plants, especially ferns.  Nothing eats a fern.  Fern tea will kill or deter any bug known to modern agriculture.  Many common farm and garden weeds are equally distasteful or toxic.

–>     WEEDS ARE GOOD NURSE CROPS.     Weeds moderate farm microclimates by reducing wind speed, increasing humidity, shading soil, drawing water from subsoil depths and sharing moisture with shallow-rooted plants.  In times of drought, crops grown in weeds often out yield plants in cultivated weed-free fields.  Even dead weeds are useful; they protect topsoil from wind and water erosion, and their decomposing tissues feed soil organisms.

Sow-And-Go:     Drill or broadcast small grains into standing vegetation.  For best results sow tall varieties as these compete better against weeds.  The best time to plant is in the dry or cold season when most weeds and grasses are dead, dormant, or growing slowly.  Pelleted seed greatly increases germination and seedling survival.  If desired, you can sow Dutch White Clover (Trifolium repens) along with the grain.  With plentiful water, expect yields 60% to 70% of conventionally planted cereals.  If rains are poor expect little or no harvest.

Sow-and-Go agronomy works best with winter cereals.  Here in Butler County, Pennsylvania (40.8606 degrees North Latitude, 79.8947 degrees West Longitude)  sow-and-go winter wheat yields 24 to 28 bushels = 1,440 to 1,680 pounds per acre.  (Conventionally planted wheat yields 40 bushels = 2,400 pounds per acre).  My fields look awful but they produce enough grain to feed my family and the entire parish.  More importantly, out-of-pocket costs are minimal so profits are high.  Sow-and-Go cereals reduce economic risk.  Consequently, growing grain in weeds usually makes more money than planting cereal crops in cultivated or herbicide-sprayed fields.

–>     WEEDS ARE GOOD BEE FORAGE.     A jar labeled “wildflower honey” means “made from weeds”.  Very few apiaries plant flowers for their bees.  Most commercial honey in the United States comes from hives that are trucked across the country to pollinate almonds, blueberries, and oranges.  These bees are fed sugar syrup to keep them alive so if you want “real” honey buy from small, local apiaries or keep your own bees.

Honeybees feed on small flowers because they have short tongues.  Most weeds are ideal bee forage because they produce many small flowers throughout the growing season.

For a hungry bee the average plow-and-spray farm is a “green desert”.  Vast monoculture fields of corn and wheat do not provide nectar = starving hives.  To maintain healthy bee colonies plant weeds and wildflowers throughout the farm or sow small-flowered crops like Anise (Pimpinella anisum), Caraway (Carum carvi), Coriander (Coriandrum sativum), Dill (Anethum graveolens), and Fennel (Foeniculum vulgare).   Seed every available space as honey production is directly dependent on flower numbers.  More blossoms = more pollen and nectar = more bees = more honey.  Alternatively, plant mixed species cover crops to replace the bountiful blossoms of naturally weedy fields.  For example, seed orchards with buckwheat (Fagopyrum esculentum), hairy vetch (Vicia villosa), and turnips (Brassica rapa subspecies rapa) to feed bees and other beneficial insects.

Think before mowing!     Do not clip entire hay fields at once.  Leave 5% to 10% of each field un-harvested so bees have something to eat.  Whenever practical, divide fields into blocks or strips then harvest sequentially so beneficial insects can move to undisturbed areas.  Similarly, mow orchards only before harvest; let weeds, wildflowers, and cover crops grow without disturbance.  More flowers = fewer insect pests.

Plant thoughtfully.     Bees will fly 5 miles to gather nectar but long trips are inefficient = less honey.  Would you like to walk 5 miles to get your dinner?  Think like a bee and sow flowers as close to hives and crops as practical.  Integrate crops and weeds whenever possible.  For example, alternate strips of tomatoes and weeds.  Result:  Save $400 per acre for insecticides.

There is no such thing as a free lunch.     Biology can replace synthetic chemicals but there is an economic trade-off:  At least 5% of a farm must be covered in weeds.  This is the same as losing 5% of your corn crop and that costs money.  If this is not acceptable then plant wildflowers or any other small-flowered crop that you can harvest and sell the seed.  You can have bees and a profitable farm at the same time.

“Weed Farming” is an essential part of the New Green Revolution where biology replaces what is normally done by diesel tractors and synthetic chemicals.  This is leading edge agronomy = what our Great-Great-Grandfathers used to do.  Every farmer should reserve a few acres to experiment with this rediscovered technology.  Growing crops in weeds is profitable — provided farmers exercise careful stewardship.  For best results manage weeds just like a living mulch or mixed species cover crop.  Always remember that there are 2 crops growing on the same land at the same time — the weed crop and the cash crop.  Each requires equal care or both crops may fail.

RELATED PUBLICATIONS:     Crop Rotation Primer; Biblical Agronomy; The Twelve Apostles; Managing Weeds as Cover Crops; Weed Seed Meal Fertilizer; No-Till Hungarian Stock Squash; Planting Maize with Living Mulches; Living Mulches for Weed Control; Organic Herbicides; Pelleted Seed Primer; Crops Among the Weeds; Forage Maize for Soil Improvement; Forage Radish Primer; and Rototiller Primer.

WOULD YOU LIKE TO KNOW MORE?     Contact the Author directly if you have any questions or need additional information on growing crops and weeds together.

Please visit:  http://www.worldagriculturesolutions.com  — or —  send your questions to:  Eric Koperek, Editor, World Agriculture Solutions, 413 Cedar Drive, Moon Township, Pennsylvania, 15108 United States of America  — or —  send an e-mail to:  Eric Koperek = worldagriculturesolutions@gmail.com

ABOUT THE AUTHOR:     Mr. Koperek is a plant breeder who farms in Pennsylvania during summer and Florida over winter.  (Growing 2 generations each year speeds development of new crop varieties).