MAIZE POLYCULTURE TRIAL 2007-2016

Abstract:     This experiment measures the productivity of a 3-species polyculture of flint corn, pole beans, and winter squash.  Heritage varieties are grown in traditional hills with fish fertilizer.  Areas between hills are untended and covered with native weeds. 

Experimental Location:     Butler County, Pennsylvania, United States of America.  40.8606 degrees North Latitude, 79.8947 degrees West Longitude.

Climate:     Butler County has a temperate climate with cold winters.  Average annual temperature = 48.75 degrees Fahrenheit = 9.3 degrees Centigrade.  Average yearly rainfall = 41.85 inches = 106.299 centimeters.  Average yearly snowfall = 37 inches = 93.98 centimeters.  Average Last Spring Frost (36 degrees Fahrenheit) = 26 May.  Average First Fall Frost (36 degrees Fahrenheit) = 23 September.  Frost Free Growing Season = 119 days (about 4 months).

Experimental Plot Size:     1/4 acre = 10,890 square feet exactly = 104 x 104 feet approximately = 10,816 square feet nominal measure.

Experimental Design:     A 1/4-acre plot was planted each year.  Crops were not rotated; hills were replanted each year in keeping with traditional Indian practice.  The experiment was repeated for 10 years (to account for weather variability between years).  10 data sets ensure reliable averages for accurate conclusions.

Soil Type:     Heavy Clay Loam

Crop Rotation:     Field was fallowed in native weeds for 7 years prior to experiment.  Hilled crops were NOT rotated.  Hills were replanted each year following traditional Indian methods.  (Historical sources record that native farmers practiced long rotations.  When soils became exhausted, hills were moved or fields abandoned).

Tillage:     There is no easy way to make Indian planting hills using conventional farm machinery.  Consequently, tree planting augers were used to dig holes 2 feet wide x 2 1/2 feet deep.  Holes were then refilled with excavated soil to make traditional mounds approximately 1 foot high.  Augers save considerable hand labor while preserving weed ground cover.  (The idea is to use native weeds as a multi-species cover crop.  Cash crops are planted in hills surrounded by weeds.  The weeds protect crops from insect pests).

Plant Density:     Hills were equidistantly spaced every 4 feet on center = 26 rows x 26 hills within each row = 676 mounds in the 1/4 acre research plot.  Each hill contained 4 maize plants seeded evenly around a circle 1-foot diameter.  When maize plants reached 2 feet high (4 to 8 leaves), 1 pole bean seed was planted 3 inches from each maize stalk.  676 hills x 4 maize plants per hill = 2,704 maize plants per 1/4 acre.  676 hills x 4 bean plants per hill = 2,704 bean plants per 1/4 acre.  Squash plants were set every other row and every other mound within alternate rows  = 8 feet x 8 feet apart = 13 rows x 13 mounds within each row = 169 squash plants per 1/4 acre.

Plants Per Acre:     10,816 maize plants; 10,816 bean plants; and 676 winter squash plants per acre.  For ease of comparison, yields are summarized in pounds per acre.

Transplant Size:     Squash transplants were 4 weeks old.  All plants were about 4 inches high.  Transplants were grown in 3 1/2 inch interior diameter peat pots filled with crumbled, dried cow manure.

Crop Varieties:     Floriani Red Flint Corn; Scarlet Runner Pole Bean; and Waltham Butternut Winter Squash.

Predominant Weed Species:     Pigweed (Amaranthus blitum), Lambs Quarters (Chenopodium album), Bull Thistle (Cirsium vulgare), Foxtail Millet (Setaria species), and Morning Glory (Ipomoeae species).

Weed Management:     No attempt was made to eradicate weeds.  Fields were mowed as close to ground level as practical immediately prior to seeding and transplanting.  Cut weeds were used as mulch for planting mounds, about 2 1/4 pounds (dry weight) of weed mulch per hill.  Squash vines overwhelmed most weeds.  Wild morning glory vines were the most difficult to control and some hills (about 15 percent on average) were nearly overrun.  Hand pruning was necessary to prevent crop loss.  A second mowing (when squash vines started to run) effectively suppressed weed growth, but squash and weeds battled for dominance in the “No Man’s Land” between hills.

Irrigation:     Crops were NOT irrigated, in keeping with traditional practice.  There is no historical record of Eastern North American Indians irrigating their crops, probably because there was little need to do so and also because native farmers did not have effective irrigation technology.  Carrying water in gourds, bark buckets, and clay pots is grueling labor.

Insect Control:     No active measures were taken to control insect pests.  Native weeds provided food and shelter for many beneficial insects that protected crops.

Fertilizer:     Fresh trash fish or fish scraps were too difficult to obtain in quantity, so fish meal (10 percent nitrogen, 5 percent phosphorous, 0 percent potassium) was used instead.  Each maize and squash plant received 1/3 cup (1.66 scale ounces) of fish meal mixed with the soil at planting.  This is the approximate equivalent of 119 pounds of available nitrogen and 59 pounds of phosphorous per acre.  Potassium was provided in the form of wood ashes, 6 scale ounces top dressed over each hill when squash vines were transplanted = about 1/2 ton (1,000 pounds) per acre = 70 pounds of available potash per acre.  (Fertilizing crops was NOT a common practice among North American Indians.  Native farmers learned these techniques from Europeans.  For example:  In colonial times, French farmers in Normandy fertilized their fields with herring).

10-Year Maize Yield Summary:     2,997.7 pounds per acre = 1.49885 tons per acre = 53.5 bushels per acre.  Range = 1,853 to 3,960 pounds per acre = 33.08 to 70.71 bushels per acre.  Average Yield per Plant = 4.43 ounces.  1 bushel of clean, shelled corn = 56 pounds.

10-Year Bean Yield Summary:     520.8 pounds per acre = 0.2604 ton per acre = 8.68 bushels per acre.  Range = 336 to 688 pounds per acre = 5.6 to 11.46 bushels per acre.  Average Yield per Plant = 0.048 pound = 0.768 ounce.  1 bushel of clean, dried beans = 60 pounds.

10-Year Winter Squash Yield Summary:     7,293.6 pounds per acre = 3.6468 tons per acre.  Range = 5,412 to 8,776 pounds per acre = 2.706 to 4.388 tons per acre.  Average Fruits per Acre = 3,000.  Average Fruit Weight = 2.43 pounds = 2 pounds 6.88 ounces.  Average Yield per Plant = 10.78 pounds = 10 pounds 12.48 ounces.  Average Fruits per Plant = 4 (4.43 exactly).  Note:  Because of their size, winter squash and pumpkins are not measured in bushels.

Estimated Carrying Capacity:     A 1-acre polyculture of maize, beans, and squash with hills spaced 4 feet apart feeds 1 family (4 people) for 1 year = 2.05 pounds of corn meal per person per day + 0.3567 pound (5.7 ounces) of dried beans for each person daily + 4.99 pounds of fresh winter squash per person daily.  This is more than sufficient to support a small family, especially if rations are supplemented by hunting and gathering.

Experimental Data (Maize):     Yields are recorded in pounds of clean, air dried corn per 1/4 acre.  All numbers are rounded down to the nearest whole pound.  Hills are spaced 4 x 4 feet equidistantly.  26 rows x 26 hills within each row = 676 hills x 4 corn plants per hill = 2,704 corn plants per 1/4 acre.

Year                    Maize Yield in Pounds per 1/4 Acre

2007                    463

2008                    895

2009                    590

2010                    848

2011                    556

2012                    990

2013                    934

2014                    804

2015                    689

2016                    727

10-Year Total Yield          7,496 pounds

Average Yield                   749.6 pounds per 1/4 acre

Yield Range                      463 to 990 pounds per 1/4 acre

Average Yield per Plant = 0.2772 pound = 4.43 ounces

Experimental Data (Pole Beans):     Yields are recorded in pounds of clean, air dried beans per 1/4 acre.  All numbers are rounded down to the nearest whole pound.  Hills are spaced 4 x 4 feet, equidistantly.  26 rows x 26 hills within each row = 676 hills x 4 bean plants per hill = 2,704 bean plants per 1/4 acre.

Year                    Bean Yield in Pounds per 1/4 Acre

2007                    103

2008                    146

2009                    92

2010                    132

2011                    84

2012                    161

2013                    124

2014                    172

2015                    128

2016                    160

10-Year Total Yield          1,302 pounds

Average Yield                   130.2 pounds per 1/4 acre

Yield Range                       84 to 172 pounds per 1/4 acre

Average Yield per Plant = 0.048 pound = 0.768 ounce.

Experimental Data (Winter Squash):     Yields are recorded in pounds of fresh fruit per 1/4 acre.  All numbers are rounded down to the nearest whole pound.  Squash plants are spaced every other row and every other hill within alternate rows = 13 rows x 13 hills within each row = 8 x 8 feet apart = 169 plants per 1/4 acre.

Year                    Squash Yield in Pounds per 1/4 Acre

2007                    1,353

2008                    2,138

2009                    2,025

2010                    1,497

2011                    1,446

2012                    2,140

2013                    2,040

2014                    1,669

2015                    2,194

2016                    1,732

10-Year Total Yield          18,234 pounds

Average Yield                   1,823.4 pounds per 1/4 acre

Yield Range                      1,353 to 2,194 pounds per 1/4 acre

Average Fruits per 1/4 Acre = 750

Average Fruit Weight = 2.43 pounds = 2 pounds 6.88 ounces

Average Yield per Plant = 10.78 pounds = 10 pounds 12.48 ounces

Average Fruits per Plant = 4 (4.43 exactly)

Commentary:     Traditional polycultures of corn, beans and squash are not commercially practical because planting and harvest cannot be mechanized.  Fish meal fertilizer is also un-economic because it costs more ($0.72 per pound) than most chemical or organic plant foods.  Planting nitrogen-fixing cover crops and sowing seeds in rows is far less expensive than traditional hill cultivation.

Strip cropping combines the ecological advantages of polycultures with the economic efficiency of farm machinery.  Plant narrow strips of cash crops following land contours.  (Adjust strip width to fit farm equipment).  Seed or transplant unrelated crops on adjacent strips to take advantage of edge effects.  Planting multiple species on each field increases biodiversity and greatly reduces crop pests.

Related Publications:     No-Till Hungarian Stock Squash; 2012 Tomato and Sweet Potato Polyculture Trial; and The Edge Effect.

Other Articles of Interest:     “Can Sunnhemp Outgrow Morning Glory?”; Worm Farming; Managing Weeds as Cover Crops; Weed Seed Meal Fertilizer; Trash Farming; Earthworm Primer; Planting Maize with Living Mulches; Living Mulches for Weed Control; Upside Down Potatoes; and Crops Among the Weeds.

Would You Like To Know More?     Please contact the Author directly if you have any questions or need additional information about modern or traditional polycultures.  Please visit:     http://www.worldagriculturesolutions.com  — or —  send an e-mail to:  http://www.worldagriculturesolutions@gmail.com  — or —  send a letter to:  Eric Koperek, Editor, World Agriculture Solutions, 413 Cedar Drive, Moon Township, Pennsylvania, 15108 United States of America.

About the Author:     Mr. Koperek is a plant breeder who farms in Pennsylvania during summer and Florida over winter.  (Growing 2 generations yearly speeds development of new crop varieties).

 

 

Advertisements

MANAGING WEEDS AS COVER CROPS

The trick to biological farming is knowing how to manage weeds.  “Manage” does NOT mean “kill”.

Internet trolls are bombarding my e-mail box with comments like:  “You can’t plant crops in weeds!  That’s why they invented tractors”.  Horse power is irrelevant and yes, you can plant crops in weeds:  I manage 90,000 acres without herbicides or mechanical cultivation.  Here is how I do it:

(1)  Manage Weeds as Cover Crops.  Think of weeds as a multi-species cover crop that costs nothing to seed.  This will save you about $40 per acre, right off the bat.  $40 x 90,000 acres = $3,600,000.  We are not talking tree-hugging here.  This is serious agronomy.

Grow weeds to protect your top soil.  A typical corn-soybean farmer in Iowa loses 2 1/2% of his land yearly = 20 tons of earth per acre = $450 per acre at $22.50 per ton (U.S. average top soil price, delivered).  Weeds have value.

If you don’t have enough weeds for a winter cover crop, seed 3 to 4 bushels of oats per acre.  Oat roots prevent soil erosion over winter.  Oats winterkill so no herbicides are needed.  Surface trash is minimal and will not interfere with conventional planting equipment.

(2)  RULE:  Keep Fields Green.  Photosynthesis is the process where plants use water, air and sunlight to make sugar.  More photosynthesis = more sugar = more plant growth = higher yields.  Bare fields are not profitable.  Smart farmers keep their soil covered with growing plants year-round.  Plant cash crops whenever possible.  Sow cover crops for mulch or fertilizer.  Seed weeds when there is no time or money to grow anything else.  The goal of biological farming is to produce the most possible organic matter per square foot.  Grow anything rather than leave soil bare.

The underlying principle of biological weed control is plant competition.  Keep the ground covered with growing crops year-round and weeds do not have a chance to get established.  Never leave the soil bare, not even for a single day.

For example:  Plant winter wheat into standing Dutch White Clover (Trifolium repens) using no-till equipment.  Next summer, harvest wheat then immediately (the same day) plant turnips into wheat stubble and clover living mulch.  Field stays green year-round.  Weeds cannot grow because they are constantly shaded by competing plants.

(3)  Sow Weed Seeds.  If you have tired, sick or dead ground, or no top soil, go to your nearest grain elevator and fill your truck with weed seeds.  These are usually free.  Some elevators charge a nominal fee for “elevator screenings” which contain many weed seeds.  Sow liberally, at least 40 pounds per acre.  Prepare for amazement.  Weeds are Nature’s Band-Aid, a fast growing cover crop evolved specifically to heal bare earth.  On steep slopes or mine reclamation sites, spread straw or spoiled hay mulch to protect germinating weeds.

(4)  Fertilize and Water Your Weeds.  Every time I say this, half my audience leaves the room.  No, I am not crazy.  Yes, I do know what I am talking about.  I farm without any government subsidies and each acre earns substantial profit.  It pays to feed and irrigate weeds (if possible).  Remember:  Weeds are a cover crop.  You want every field blanketed with a luxuriant jungle of weeds at least 6 feet high.  So water and fertilize as needed, and do not worry about what your neighbors say.  Farming is not about yields; farming is about the bottom line.  Weeds put money in your pocket.

(5)  Feed the Weeds and the Weeds will Feed Your Crops.  Weeds have enormous root systems in proportion to their stems and leaves.  Many weeds also have tap roots that plunge deep into the subsoil.  Translation:  Weeds are great at scavenging nutrients that would otherwise leach away.  Weeds have quick growth response to plant food so a little fertilizer goes a long way.  A few pounds of nitrogen create a vast jungle of vegetation that makes good mulch and fertilizer.  The average weed contains twice the nutrients of an equal weight of cow manure.  Broad leaf weeds rot quickly so fertilizer elements are rapidly recycled for crop use.  Plant crops and weeds together and yields often increase.  The reason is ecologic synergy = plant symbiosis.  Weeds both compete AND cooperate with neighboring plants.  Water and nutrients are shared so crops and weeds grow better.  I learned this lesson farming melons.  The best fruits came from the weediest fields.  So I started planting melons into weeds.  The weeds provided light shade and the melons followed weed roots down into moist subsoil.  Come drought and clean cultivated fields produced little or no crop.  Melons and weeds yielded fair crops.  Irrigated melons and weeds overfilled my trucks with fruit.  Think about this the next time you buy a drum of herbicide.

(6)  Use Weed Seed Meal Fertilizer.  How would you like to slash fertilizer costs?  Get weed seeds or screenings from your local elevator.  Grind them with a hammer mill or roller mill.  Broadcast 4 tons per acre or drop 10 pounds per 25 feet of row.  Unlike chemical fertilizers weed seed meal will not burn crop roots so you can hurl nutrients with wild abandon.  If you do not have any weed seeds, use any other waste seed like spoiled corn, brewer’s grain, or broken soy beans.

To use LIVE weed seeds as fertilizer broadcast seeds into a standing cover crop like Red Clover (Trifolium pratense).  Earthworms, ants, beetles and other critters eat the weed seeds.  Clover kills any weeds that germinate.  Caution:  Don’t try this unless you have a tall, aggressive cover crop that blankets the soil with dense shade.

(7)  RULE:  Apply Chemical Fertilizer Only to Growing Plants.  This rule covers all crops (including weeds) without exception.  It makes no sense to spread fertilizer on bare ground.  Chemical nutrients are wasted unless there are live roots waiting to absorb them.  For best results, synthetic fertilizers should be applied in small doses throughout the growing season, ideally diluted in irrigation water.  Feed growing crops only and well water stays pure = free of nitrates.

(8)  Good Farmers Grow Fungi.  The Fungi Grow the Crops.  Think of all the pipes, wires and roads needed to run a modern city.  Without these conduits life would be nearly impossible.  A corn field is no different.  Under the soil surface is a jungle of lifeforms, a whole zoo full of critters exceeding the combined population of the world’s largest cities.  And every one of these underground citizens depends on fungi for survival.  Millions of miles of microscopic fungi tie the underground world together.  Fungi are the interstate highway system of the soil ecology.  Water and nutrients are conveyed to hungry roots.  Plants share resources through fungal networks.  Many crops are so dependent on fungi that they cannot exist without these symbiotic micro-organisms.  Kill the fungi and the soil ecology collapses.  Yields plummet and fields become sick and barren.  Try to farm dead soil and you will spend vast sums for synthetic fertilizers, pesticides, and irrigation.  Today, this is called “conventional agriculture” and most growers lose money on every acre they plant.  There is a better way to farm.

Fungi like cool temperatures, a moist environment, plenty of air, and lots of organic matter.  Rip up the ground with plows and the fungal network is destroyed.  Soil temperatures spike, the earth is parched, a cyclone of oxygen rushes into the ground, and organic matter burns away in a firestorm of excess decomposition.  The result is like dropping a nuclear bomb:  Billions of critters die and the soil ecology is devastated.  Recovery takes years.

Sell your plows, disks and harrows — you don’t need them.  Grow weeds or other cover crops and leave the fungi alone.  Open the soil just enough to get seeds or transplants into the ground.  Further disturbance cuts profits and yields.

(9)  Till Your Fields with Earthworms.  My Grandfather taught me:  “Feed the worms and the worms will tend your crops”.  Common earthworms (Lumbricus terrestris) eat organic matter and excrete enough manure to grow 200 bushel corn = 11,200 pounds per acre.  They also burrow 6 feet into the subsoil.  My fields average 1 million worms per acre.  That’s about 23 worms per cubic foot = 1,200 miles of burrows per acre.  When thunderstorms drop 2 inches of rain per hour my neighbors’ fields wash away.  My soil stays in place.  When drought bakes the county, my corn yields over 100 bushels per acre (without fertilizer, herbicides, cultivation or irrigation).  How is this possible?  Plant clover and earthworm populations double.  I seed clover into weeds and the worms feast on the multi-species “salad bar”.  Mind you, this process does not occur overnight.  It took 12 to 15 years to wean my fields off synthetic nutrients.  That’s 4 to 5 generations of earthworms.  I used to borrow mountains of cash to buy farm chemicals.  Now I plant clover and have no debts.

(10)  Grow Your Own Fertilizer:  Conventional green manures are plowed into the soil.  A less invasive technology is called Chop-And-Drop.  Use a rotary mower, flail mower, bush hog, forage chopper, or common lawn mower to cut plants into small pieces that decompose quickly for rapid nutrient cycling.  Immediately sow or transplant another crop before weeds start germinating.  Alternatively, knock down cover crop with a roller-crimper or sickle-bar mower then plant through the mulch using no-till equipment.  For example, I sow Hairy Vetch = Winter Vetch = Vicia villosa in October then roller-crimp vines in May.  Vetch controls weeds and fixes sufficient nitrogen for 200 bushel corn or any other crop I want to grow.  Remember:  Chop plants into small pieces for fast-acting fertilizer.  Crimp or cut whole plants for mulch.  Finely chopped plants will NOT control weeds.

(11)  Use Mulch-In-Place.   Think of how much money you will save if you don’t have to buy herbicides or cultivate fields multiple times.  The savings in diesel fuel alone will pay for a 2-week vacation anywhere you care to go.  Let your neighbors plant seed in cold ground.  Be patient and give your weeds more time to grow.  Wait until the soil warms and weeds are at least 5 feet high.  Kill weed cover crop with a roller-crimper or sickle-bar mower then immediately seed or transplant through weed mulch with no-till equipment.  Mulch retards weed growth 4 to 6 weeks — just enough time for your crop to germinate and start covering the rows.  Once the crop canopy closes weeds are shaded and there is no more work until harvest.

There are many variations of Mulch-In-Place.  For example, use a forage chopper to deposit weed mulch into convenient windrows then transplant pumpkins or other fast-growing vine crops through the mulch.  Alternatively, mow strips through weed covered fields.  Transplant vine crops down mowed rows then roll out drip irrigation tape.  Use mowed weeds to mulch crops until plants are established.  Once vines begin to run they overwhelm weeds between rows.  Standing weeds protect vine crops from insect pests.

If you do not have weedy fields, sow winter rye = cereal rye = Secale cereale at 3 bushels per acre.  Roller crimp or sickle-bar mow when rye reaches 5 to 6 feet high or when grain reaches soft dough stage.  Immediately seed or transplant through rye mulch using no-till equipment.  Note:  Mulch-In-Place works with just about any cover crop that grows at least 5 feet high and produces 4 to 5 tons of mulch per acre.

Who needs Monsanto?  Grow mulch crops and never buy herbicide again.  Sell your spray rig and pay off farm debts.

(12)  Use Weeds to Control Insect Pests.  Plant weeds with your crops and you will never have to buy insecticides again.   Set 4 rows of tomatoes then leave a strip of weeds.  Seed 4 rows of sweet corn and leave another strip of weeds.  Plant 4 rows of sweet potatoes with a third strip of weeds.  Drill 4 rows of sunflowers and a fourth strip of weeds.   Alternate crops and weeds across fields and farms, following land contours.  Adjust strip widths to match planting and harvesting equipment.  Weeds provide food, shelter and alternate hosts for beneficial insects.  The good bugs eat the bad bugs.  Native weeds should cover at least 5% to 10% of every farm, even if you also grow insectary plants.  I learned this lesson the hard way.  I grew dozens of crops with small flowers especially to feed predatory and parasitic insects.  Biological control was only partly successful until I planted native weeds next to crops needing protection.  Close proximity is essential as many beneficial insects penetrate only 200 feet into a field over the course of a growing season.  Remember:  You need a mix of native weeds AND insectary plants to protect cash crops.  Maintain biological diversity and pests rarely cause economic damage.  I have not purchased insecticides (organic or synthetic) in 18 years.

(13)  Plant into Standing Weeds (Sow-And-Go).  This works best with fall planted winter grains like wheat, barley, and rye.  Seed directly into standing vegetation using no-till equipment.  (Standing weeds trap winter snow).  If desired, you can seed Dutch White Clover (Trifolium repens) at 8 to 12 pounds per acre with winter cereals.  The clover provides 90% to 95% weed control, about as good as glyphosate (Roundup).  Expect 60% to 70% of conventional yields without fertilizer or irrigation.  In a dry year you might lose your crop.

If you do not have no-till equipment, try surface seeding = Sow-And-Mow.  This works best with pelleted seed.  Broadcast seed into standing weeds then immediately roller-crimp or cut vegetation with a sickle-bar mower to cover and protect germinating grain.  Come back next summer and harvest your crop.

Alternatively, broadcast winter grain into standing weeds then mow with a rotary mower or flail mower to chop vegetation into small pieces.  Immediately till field with a rear-tine rototiller set to skim soil surface at 2 inches depth.  Make only 1 pass across field.  Your field will look ugly but will make a good crop = 40 bushels (2,400 pounds) of wheat per acre in cool, temperate climates with 40 or more inches of rainfall yearly.

If you have no farm machinery, try the ancient Roman practice of Stomp Seeding.  Fence field securely.  Broadcast seed into standing vegetation.  Turn in livestock (cattle, sheep or goats) until they eat about 1/2 of the vegetation and stomp the other half into mulch.  Livestock must be well crowded in order to make this work.  Allow each animal only enough space to turn around = use very high stocking densities = mob grazing.  For example, 600 to 1,200 cows per acre.  Directly forage is exhausted, move livestock to a new enclosure or fresh pasture.  If field is “tired”, “sick” or barren, feed livestock in their enclosure until they deposit 1/2 to 1 pound of manure per square foot = about 11 to 22 tons per acre, then move animals to another enclosure.

(14)  Plant into Living Mulches.  This is ideal for transplants or crops with large seeds.  For best results use no-till equipment and low-growing legumes like Dutch White Clover (Trifolium repens) or Crimson Clover (Trifolium incarnatum).  Seed Dutch White Clover at 8 to 12 pounds per acre, or Crimson Clover at 14 pounds per acre.  Seed or transplant directly cover crop reaches mature height of 6 inches for Dutch clover or 12 inches for Crimson clover.  It is good practice to mow clover before planting to give crops a head start.  Watch field carefully.  When the FIRST seedling emerges, immediately mow field as close to soil surface as possible.  If clover is especially vigorous, it may be necessary to mow again 2 weeks later.  Note:  If desired, you can grow corn (Zea mays) with tall-growing Red Clover (Trifolium pratense) using the same method.  No fertilizer, herbicides or cultivation are necessary if clover grows a full year before planting maize.

Planting into clover is a good way for farmers to learn how to work with weeds.  Clover is convenient to grow because its height is easily controlled.  Alternatively, you can make your own cover crop mix and use this as a substitute for naturally weedy fields.  Combine 2 cool season grasses + 2 cool season legumes + 2 cool season broad leaf plants + 2 warm season grasses + 2 warm season legumes + 2 warm season broad leaf plants + 2 root crops (tillage radish, stock beets, or turnips) = 14 species cover crop mix.  Plant at least 20 pounds per acre.  If desired, more species can be added.  For best economy, select cheap seed to keep costs below $40 per acre.

Remember:  All living mulches compete with their companion crops for water, light and nutrients.  For example, Dutch White Clover grows only 6 inches high but this is enough to shade the lower stems of wheat.  Plant Dutch clover with tall wheat varieties and yields are normal.  Seed Dutch clover with semi-dwarf or dwarf wheat and yields may drop 30% to 50%.  Use common sense when pairing cash crops with clover, weeds, or any other living mulch.  Combine tall varieties with low-growing cover crops.  Water and fertilize for both cash crop AND cover crop.  If necessary, retard or kill companion crop by mowing, mulching or roller-crimping.

(15)  Grow Crops and Animals Together.  2,000 years ago the Romans discovered that manure is more profitable than meat.  It pays to keep animals just for their manure.  Pastures grow better when grazed.  Crops grow better when dunged.  There is a significant difference in growth between plants fed manure or artificial nutrients.  No one has yet figured out why.  Drive a herd of cattle into high weeds (or a mixed species cover crop).  Let the cows graze until they have eaten 1/2 of the forage and stomped the rest.  Move herd to fresh pasture then immediately sow small grains or other crops with no-till equipment.  No herbicides, cultivation or chemical fertilizers required.

The cheapest way to keep livestock is to graze them on fresh, green grass.  Move herds to new pasture at least once daily and do not re-graze paddocks until forage has recovered.  This is called rotational grazing and eliminates the costs of building barns, making hay, and spreading manure.  If you don’t have tidy pastures seed mixed-species cover crops or graze native weeds.  What the cows don’t eat the goats will, and what the goats don’t like the sheep will relish.   Range chickens 3 or 4 days behind cows and the birds eat the fly maggots.  Nothing goes to waste and meadows stay clean and sanitary.

Not all weeds are good to have around.  When weeds get out of control there are 2 easy ways to recover ecologic balance:  (1)  Grow cover crops in series, or  (2)  Graze with mixed livestock.  Cover crops overwhelm weeds by shade and competition.  Mixed livestock eats everything in sight.  Either way, problem weeds are eliminated and crop rotation can proceed normally.

(15)  Think Unconventionally.  If everyone around you grows corn, plant something else.  If everyone says you have to spray, don’t.  Conventional wisdom is often just plain wrong.  Do not be afraid to experiment.  Every year I reserve about 2% of my land for agricultural research.  I learned to farm by doing the opposite of what the “Experts” advised.  Along the way I have enjoyed amazing success and spectacular failure.  Both are equally instructive.  Monsanto says weeds are bad and should be eradicated.  I think differently.  For example, in my garden (a jungle of weeds), I thin Bull Thistles (Cirsium vulgare) until they stand about 1 foot apart, then I plant 1 pole bean seed per thistle plant.  The beans climb the thistles and I do not have to cut poles.  My spray-by-the-calendar neighbors told me to cut the weeds or mulch them into oblivion.  Instead, I conducted a paired comparison of 100 beans on thistles with 100 beans on poles.  Thistles beat poles by a slight margin, 3.55% over a 5-year trial.  This is only one of many examples of symbiosis between weeds and crops.  Widely spaced weeds often increase crop yields.  I don’t recommend planting beans and thistles on a commercial scale, but neither do I insist on weed-free fields.  Weeds spaced 3 feet apart (about 5,000 weeds per acre) no longer bother me.  The tomatoes don’t seem to mind and I don’t have to spray for hornworms.  Learn from nature or buy from Monsanto.

Related Publications:  Weed Seed Meal Fertilizer; Trash Farming; No-Till Hungarian Stock Squash; Planting Maize with Living Mulches; Living Mulches for Weed Control; Pelleted Seed Primer; Crops Among the Weeds; Forage Maize for Soil Improvement; and Rototiller Primer.

Would You Like To Know More?  Please visit:  http://www.worldagriculturesolutions.com  — or —  send your questions to:  Eric Koperek, World Agriculture Solutions, 413 Cedar Drive, Moon Township, Pennsylvania, 15108 United States of America  — or —  send an e-mail to:  worldagriculturesolutions@gmail.com

About the Author:  Mr. Koperek is a plant breeder who farms in Pennsylvania during summer and Florida over winter.  (Growing 2 generations yearly speeds development of new crop varieties).