Biological Control of Citrus Greening

Summary: This 23-year experiment looks at how orange trees grow in a multiple-species cover crop of 29 native weeds and 60 companion plants. A small grove of 27 trees is followed from crop year 2000 (before citrus greening) through 2022. (Citrus greening appeared in Florida around 2005). Live tree number dropped from 27 to 24. Average early season fruit Brix dropped from 14.6 to 11.5%. Mean late season Brix declined from 16.0 to 12.9% Average fruits per tree decreased from 200 to 140. Average market fruit weight dropped from 7.33 to 4.5 ounces. Mixed species cover crops are not a cure-all for citrus greening, but they enable orange trees to live with the disease and produce fruit of acceptable quality.

Experimental Location: Venus, Highlands County, Florida, United States of America. Zip Code: 33960. 27.0670 degrees North Latitude. 81.3571 degrees West Longitude.

Climate: Venus has a humid subtropical climate with a distinct monsoon season. The wet months are June through September (31 inches of rain). The dry months are November through January (6 inches of rain). Elevation = 82 feet above sea level. Average Annual Temperature = 72.5 degrees Fahrenheit. The warmest month is July (High = 92 degrees Fahrenheit). The coldest month is January (Low = 48 degrees Fahrenheit). Average Annual Rainfall = 52 inches. Average First Frost (36 degrees Fahrenheit) = 21 December. Average Last Frost in Spring (36 degrees Fahrenheit) = 20 February. Frost Free Growing Season = 317 days = approximately 10 months. Note: Venus is the warmest area in Florida. Frosts are rare and unpredictable.

Experimental Design: A small grove of 27 trees is monitored over 23 years for longevity (age), fruit quality (percent sugar content), and yield (fruit number and weight). Sugar content in degrees Brix is measured with a refractometer by sampling juice of 10 early season and 10 late season fruits from each tree. (1 degree Brix = 1 percent sugar content by weight = 1.5 ounces of sugar in 1 gallon of pure water). 23 years of data ensure reliable averages for comparison with commercial orchards.

Soil Type: Sandy Gravel. South Florida soils are deficient in most primary nutrients and trace elements. The best management practice for these problem soils is to keep fields “green” all year long. Growing plants add organic matter to the soil and live roots feed sugar to beneficial micro-organisms.

Rotation: Experimental orchard was planted in 1970 on pasture seeded with multiple species forages. It is good practice to plant citrus on fresh ground = hay fields or meadows 7 or 8 years old. Long rotations cure “orchard syndrome” = buildup of nematodes and diseases that make trees sick and cut yields by 30 to 50 percent.

Variety: Citrus sinensis cultivated variety “Cyprus”. This is a “vintage” variety imported from the island of Cyprus in 1880. Cyprus oranges are large and sweet, about the size of a grapefruit = 13 to 18 ounces and 14 to 20 degrees Brix. Cyprus oranges grown in Florida are smaller (7 to 14 ounces) and contain less sugar (14 to 16 degrees Brix for late season fruit).

Spacing: Experimental trees are plated 30 feet equidistantly = 48 trees per acre to promote maximum airflow through the orchard and optimum light penetration into the canopy. For comparison, most modern Florida orchards have 70 trees per acre spaced 25 feet apart.

Cultivation: Experimental orchard was not plowed, disked, harrowed, or cultivated. Weeds and cover crops were allowed to grow without interference. Orchard was mowed once yearly just before harvest.

Agronomy Note: Conventional tillage of South Florida soils is a pointless waste of effort. Plowing sandy gravels merely stirs up more rocks. Cultivation destroys the network of beneficial fungi upon which orange trees depend for water and minerals.

Fertilizer: No nitrogen fertilizers (chemical or organic) were used in this experiment. Legumes and independent soil bacteria supplied nitrogen for orange trees. 1 ton each of clay, phosphate rock, and greensand were broadcast yearly over every acre. 500 pounds of fritted trace elements were applied to each acre every 5th year.

Agronomy Notes: Small amounts of clay, about 3/4 ounce per square foot yearly, help sandy soils hold water and nutrients for better plant growth. Only modest amounts of clay are needed to “strengthen” sandy fields, never more than 10 percent by weight in the top 6 inches of soil. Adding excess clay reduces porosity and makes soil too sticky.

Micro-nutrients are mixed with molten soft glass then crushed into coarse sand called “frit”. Minerals are released slowly as the glass dissolves in the soil.

Herbicide: No herbicides were used in this experiment. Weeds and cover crops were allowed to grow with “wild abandon” to encourage maximum populations of beneficial insects. The trees did not seem to mind competition from their companions even when occasional vines climbed into the branches. Errant vines were removed by hand and the orchard mowed immediately before harvest.

Fungicide: No fungicides were used in this trial. Widely spaced trees grown in weeds are remarkably healthy even when infected by citrus greening.

Insecticide: No insecticides (synthetic or natural) have ever been used in this orchard. One of the significant advantages of growing citrus with many companion plants is that trees do not require spraying. Large populations of native predators and parasites keep pests below economic threshold levels.

Irrigation: Experimental trees are irrigated by overhead sprinklers installed when the orchard was planted in 1970. Trees receive 2 inches of water weekly, as needed.

Harvest: Experimental trees were harvested by hand. All attempts to use robots have failed miserably. Machine intelligence and artificial vision systems cannot handle random limbs and branches. No robot has ever picked more than 60% of available fruit even when citrus trees were espaliered and trained on wires. Machine harvest of oranges remains a faint hope far in the future.

60-Species Cover Crop with 48% Legumes:

29 legumes (48.33%) + 15 forbs (25%) + 11 grasses (18.33%) + 5 root crops (8.33%) = 60 total species (99.99%).

We plant a little bit of whatever cover crop seeds are available. Our goal is broad genetic diversity. Wide variety supports the maximum number of beneficial insects and micro-organisms. Admittedly, this is “black box” science. We do not know how the biology works but orange trees somehow manage to survive and ripen good fruit. Cover crops are not a panacea for citrus greening but sowing seeds is far less costly than alternative treatments.

Alfalfa = Lucerne = Medicago sativa

Birdsfoot Trefoil = Lotus corniculatus

Black Medic = Medicago lupulina

Buckwheat = Fagopyrum esculentum

Butterfly Pea = Centrosema rotundifolium

Canary Seed = Phalaris canariensis

Caraway = Carum carvi

Centro = Centrosema pubescens = Centrosema molle

Clitoria = Clitoria ternatea

Cowpea = Vigna unguiculata

Crimson Clover = Trifolium incarnatum

Deer Vetch = Aeschynomene americana

Dill = Anethum graveolens

Dutch White Clover = Trifolium repens

Egyptian Clover = Trifolium alexandrinum

Fenugreek = Trigonella foenum-graecum

Flax Seed = Linum usitatissimum

Forage Kale = Brassica oleracea sabellica

Forage Maize = Zea mays

Forage Pea = Pisum sativum

Forage Sorghum = Sorghum bicolor x Sorghum sudanense

Forage Soybean = Glycine max = Glycine soja

Forage Turnip = Brassica campestris rapa

Frost Bean = Vicia faba minor

Garden Radish = Raphanus sativus

Grain Sorghum = Milo = Sorghum bicolor

Hairy Indigo = Indigofera hirsuta

Jack Bean = Canavalia ensiformis

Lupine (blue) = Lupinus polyphyllus

Mexican Sunflower = Tithonia rotundifolia

Mung Bean = Green Gram = Vigna radiata

Oat = Avena sativa

Okra = Abelmoschus esculentus

Partridge Pea = Cassia rotundifolia = Chamaecrista species

Pearl Millet = Pennisetum glaucum

Phacelia = Phacelia tanacetifolia

Pigeon Pea = Cajanus cajan

Plantain = Plantago major

Rape Seed = Rape Seed = Brassica napus

Red Clover = Trifolium pratense

Red Lentil = Lens culinaris

Rice (African) = Oryza glaberrima

Rice (Indian) = Oryza sativa indica

Rice (Oriental) = Oryza sativa japonica

Rutabaga = Brassica napus napobrassica

Safflower = Carthamus tinctorius

Scarlet Runner Bean = Phaseolus coccineus

Sesame = Sesamum indicum

Sesbania = Sesbania exaltata

Stock Beet = Magelwurzel = Beta vulgaris

Sugar Beet = Beta vulgaris saccharum

Sunflower = Helianthus annuus

Sunn Hemp = Crotalaria juncea

Sweet Clover = Meliotus officinalis

Sweet Sorghum = Sorghum bicolor saccharum

Velvet Bean = Mucuna pruriens

Winter Barley = Hordeum vulgare

Winter Rye = Secale cereale

Winter Vetch = Vicia villosa

Winter Wheat = Triticum aestivum

Agronomy Notes: Cover crop seeds may be mixed with corn meal, weed seed meal, or similar carrier for more even distribution. Use a no-till drill and sow not less than 20 pounds per acre in 2-inch-deep furrows spaced 7 inches apart. Alternatively, mow field first, broadcast seed, then make 1 pass only with a rear-tine rototiller set 2 inches deep. Cover crops may also be surface seeded = Sow-and-Mow: Broadcast seed into standing weeds 5 to 6 feet tall then immediately mow to cover and protect seed. Prompt and frequent irrigation is essential to speed germination of surface sown seeds.

Sesbania exaltata is a useless weed to many South Florida growers. All varieties of sesbania are legumes that fix 130 pounds of nitrogen per acre every 60 days when grown in monocultures. The difference between a “weed” and a useful plant is often careful management.

Common Agricultural Weeds in Highland County:

Following is a list of 28 weed species most common on South Florida farms. These are only the most bothersome weeds. There are many other species in fields around Venus. Subtropical warmth encourages rapid plant growth so weed competition is constant on agricultural fields. The only biologically effective way to manage weeds is to keep ground covered with live crops year-round. Shade and intense competition prevent weeds from becoming established.

American Black Nightshade = Solanum americanum

Annual Ryegrass = Lolium multiflorum

Bristly Starbur = Acanthospermum hispidium

Bull Thistle = Cirsium vulgare

Cocklebur = Xanthium strumarium

Coffee Senna = Senna occidentalis

Crabgrass = Digitaria sanguinalis

Fall Panicum = Panicum dichotomiflorum

Florida Beggarweed = Desmodium tortuosum

Goosegrass = Eleusine indica

Hairy Nightshade = Solanum physalifolium

Johnsongrass = Sorghum halepense

Lambsquarters = Chenopodium album

Morning Glory = Ipomoea purpurea

Palmer Amaranth = Amaranthus palmeri

Pigweed = Amaranthus blitum

Purple Nutsedge = Cyperus rotundus

Purselane = Purslane = Portulaca oleracea

Ragweed = Ambrosia artemisifolia

Ragweed Parthenium = Parthenium hysterophorus

Redroot Pigweed = Amaranthus retroflexus

Sandbur = Cenchrus echinatus

Sickle Pod = Senna obtusifolia

Smooth Pigweed = Amaranthus hybridus

Spanish Needle = Bidens alba

Spiny Amaranth = Amaranthus spinosus

Texas Panicum = Urochloa texana

Yellow Nutsedge = Cyperus esculentus

Experimental Measurement: Harvested fruits were weighed on a digital platform scale accurate to 1/100th pound. All numbers are rounded down to the nearest 1/10th pound.

Summary of Experimental Results:

Effect of Citrus Tree Greening on Orange Tree Growth

Trees spaced 30 x 30 feet apart, planted in 1970. Cyperus Orange grafted on Trifoliate Orange rootstock. Irrigated orchard covered with native weeds and 60-species companion plant mix mowed only before harvest. 1 ton each of clay, phosphate rock, and greensand broadcast per acre yearly. 500 pounds per acre of fritted trace elements applied every 5 years.

Harvest Year 2000

Tree Number = 27

Early Season Fruit Brix = 14.1%

Late Season Fruity Brix = 16.0%

Fruits per Tree = 200

Market Fruit Weight = 7.3 oz

Yield per Tree = 91.2 lb

Note: Degrees Brix is a measure of “soluble solids” = sugar content. 1 degree Brix = 1 percent sugar.

Harvest Year 2022

Tree Number = 24

Early Season Fruit Brix = 11.5%

Late Season Fruit Brix = 12.9%

Fruits per Tree = 140

Market Fruit Weight = 4.5 oz

Yield per Tree = 39.3 lb

Commentary: 39 pounds of fruit per tree is nothing to cheer about unless the alternative is bulldozing an entire orchard. Growing orange trees in “weeds” has 3 distinct advantages:

(1) Companion plants help rejuvenate trees so they have productive lives exceeding 50 years. Most trees infected with citrus greening live only 15 years or less.

(2) Multiple species cover crops enable orange trees to ripen fruits with high sugar contents, 11.5 to 12.9 degrees Brix. These values compare favorably with oranges from California where citrus greening has not yet spread.

(3) Trees grown in weeds do not have economically significant insect problems. Experimental trees remain unsprayed after 54 years. Companion plants provide food, shelter, and alternate hosts for beneficial predators and parasites. The good bugs eat the bad bugs.

Little is known about the interaction between species in a cover crop mix. Even less is known about the interrelationships between myriad species of soil micro-organism and plant roots. What is known is that a lively trade exists between plants and symbiotic fungi. Roots provide sugar to fungi in exchange for water and minerals. Perhaps complex organic compounds are traded as well. Fungi make anti-biotics to protect themselves from bacteria. Citrus greening is a bacterial disease. Could anti-bacterial chemicals be responsible for keeping orange trees healthy?

Related Publications: Biological Agriculture in Temperate Climates; Crops Among the Weeds; Living Mulches for Weed Control; Managing Weeds as Cover Crops; The Twelve Apostles (multi-species cover crop); Trash Farming; Weed Seed Meal Fertilizer.

Would You Like to Know More? For more information on biological agriculture and multi-species cover crops please visit: http://www.worldagriculturesolutions.com — or — mail your questions to: Eric Koperek, Editor, World Agriculture Solutions, 413 Cedar Drive, Moon Township, Pennsylvania 15108 United States of America — or — send an e-mail to: worldagriculturesolutions@gmail.com.

About the Author: Mr. Koperek is a plant breeder who farms in Pennsylvania during summer and Florida over winter. (Growing 2 generations yearly speeds development of new crop varieties).

Index Terms: Biological Agriculture; Biological Insect Control; Candidatus liberibacter asiaticus (citrus greening bacteria); Companion Plants; Citrus Greening (disease); Cyprus Orange (Citrus sinensis cultivated variety Cyprus); Huanglongbing (citrus greening disease); Multiple Species Cover Crops; Orange Fruit Brix; Orchard Floor Management; Sweet Orange (Citrus sinensis); Trifoliate Orange Root Stock (Citrus trifoliata); Weeds (as cover crop).

Publication Date: June 2023, Homestead, Florida.

WILDCRAFTED POTATOES

It is not enough to be “organic”. Now, shoppers want wildcrafted. This is as wild as it gets:

Wait until late Fall or early Winter when air and soil temperatures are reliably cold but the ground is not yet frozen. This is called dormant planting = most everything is asleep waiting for Spring.

Fall planted potatoes yield more than Spring planted potatoes. Dormant planted potatoes sprout very early in Spring and make most of their growth when weather is cool and wet. This provides considerable protection from drought and avoids most competition from weeds.

Choose the weediest field you can find. Broadleaf weeds 5 to 6 feet tall are ideal but use whatever is available. If you cannot plant in Autumn, wait patiently for Spring weeds to grow shoulder to head high. In Pennsylvania, potatoes can be planted the first or second week of July for harvest in late October or early November.

Mow the weeds and save the cuttings for mulch. On large farms use a forage harvester to deposit chopped weeds into convenient windrows for planting. Alternatively, use a hay baler. Weeds for mulch can be baled wet. Cut only weeds needed for mulch. Leave all other weeds standing. Weeds feed and protect soil.

Plant whole seed potatoes the size of an egg (2 to 3 ounces). Do not use cut or damaged potatoes as these will rot. Plant a mixture of colors and varieties to increase biodiversity. Multiple species protect crop from insects and diseases.

Do not apply fungicides or insecticides to tubers or vines. No chemicals are necessary for wildcrafted potatoes. Control pests and diseases with 7-year rotations. Always plant potatoes on fresh ground.

Dig planting holes 5 to 8 inches deep. A bulb planter works great for this task or use a no-till planter.

Space plants widely to avoid water competition = 3 feet x 3 feet apart = 4,840 plants per acre. Alternate rows of potatoes with rows of weeds. Adjust weed row width to match your equipment. Weeds regrow in Spring and protect potato plants from bugs.

Fill holes with dirt then cover with 8 inches of weed mulch = about 2 bushels = 18 gallons. Make a circle of mulch at least 2 feet in diameter. Mulch protects young potato plants until vines start running. When plants are established vines sprawl over everything around them and even climb nearby weeds.

No fertilizer is needed for wildcrafted potatoes. Weeds bring nutrients up from the subsoil to feed potato plants.

Irrigate if practical or just let nature take its course. Neighboring weeds provide potatoes some drought protection. Weeds make light shade and block drying winds. This raises humidity around potato vines. Potato roots also follow weed roots deep into moist subsoil.

There is nothing more to do until harvest. Wait until vines are completely dead before digging tubers with a garden fork, potato plow, or potato harvester.

My 2022 wildcrafted potato harvest averaged 2 pounds 4.5 ounces per plant. This yield did not win any prizes at the Butler County Fair, but I do not care about ribbons. Wildcrafted potatoes are selling for $1.00 per pound, and I have $10,000 worth of spuds in the barn.

RELATED ARTICLES: Crops in the Weeds; Living Mulches for Weed Control; Managing Weeds as Cover Crops; Upside Down Potatoes; Trash Farming; and Weed Seed Meal Fertilizer.

WOULD YOU LIKE TO KNOW MORE? For more information on biological agriculture and farming in the weeds, please visit: http://www.worldagriculturesolutions.com — or — send an e-mail to: worldagriculturesolutions@gmail.com — or — post your questions to: Eric Koperek, Editor, World Agriculture Solutions, 413 Cedar Drive, Moon Township, Pennsylvania, 15108 United States of America.

ABOUT THE AUTHOR: Mr. Koperek is a plant breeder who farms in Pennsylvania during Summer and Florida over Winter. (Growing 2 generations yearly speeds development of new varieties).

INDEX TERMS: Bio-Drills; Biological Agriculture; Biological Insect Control; Bio-Pumps; Cover Crops; Mulching; Nurse Crops; Organic Farming; Potato (Solanum tuberosum); Weeds as Bio-Drills; Weeds as Fertilizer; Weeds as Mulch; Weed Farming; Wildcrafting; Windbreaks.

PUBLICATION DATE: January 2023, Evans City, Pennsylvania.

BIBLICAL AGRONOMY

“Plant a garden and you work hand in hand with God”.

What Is It?     “Biblical Agronomy” is a philosophy of agriculture, a system of farming based on the Christian bible and practices of the early Catholic Church.  Over time these precepts have evolved into a new way of thinking, a unique form of Biological Agriculture.

How To Do It:     Following are Bible passages with agricultural commentaries to help farmers apply biblical principles in a modern world:

“Thou shalt not kill”.  Exodus 20 : 1 – 17.   Editor’s Note:  This injunction from the “Ten Commandments” is the first principle of Biblical Agronomy and the hardest concept for most farmers to practice.  Modern industrial agriculture is largely negative.  It proceeds from the assumption that nature must be subdued.  Soils must be plowed.  Weeds must be eradicated.  Insects must be exterminated.  Farmers spend much of their time spraying deadly chemicals:  Herbicides, insecticides, fungicides — a laundry list of toxins.  Conventional agriculture is all about killing things.  Biblical agronomy takes the opposite approach:  Agriculture is about life, not death.  Farmers concentrate on genesis = creating life.  Biology replaces chemicals.  Earthworms replace plows.  Plants replace petroleum.  “Let nature do the heavy lifting”.  The principle distinction between Biblical Agronomy and conventional agriculture is that when problems arise farmers ask:  “How do I solve this without killing anything?”

“Speak to the earth, and it shall teach thee”.  Job 12 : 8.  Editor’s Note:  Successful farmers copy nature in their fields.  Two thousand years ago Roman farmers practiced “Cultura Promiscua” = companion planting:  Olives, pomegranates, figs, grapes, cereals, legumes, and vegetables were grown together on small, 5-acre farms worked by hand.  Today, we call this “agroforestry”.  Back then, it was practical husbandry.  Planting mixtures of crops without plowing was the easiest way to maintain soil fertility and prevent erosion.  Native fields and forests have no bare ground.  The earth is constantly covered with mixtures of plants.  Observe nature closely then copy what you see.

“If you enter your neighbor’s grain field, you may pick kernels with your hands, but you must not put a sickle to  his standing grain”.  Deuteronomy 23 : 25.  Editor’s Note:  The poor have the right to eat from your fields but not the right to harvest for profit.  Over the centuries this rule has evolved into the practice of leaving some part of a field unharvested so beneficial insects and wildlife have something to eat.  Modern custom is to reserve 5% to 10% of crops for “Nature’s Pantry”.  The alternative is buying costly insecticides.

“If you enter your neighbor’s vineyard, you may eat all the grapes you want, but do not put any in your basket”.  Deuteronomy 23 : 24.  Editor’s Note:  Eat your fill but do not carry any away.  Hospitality to all in need was official Church doctrine during the Middle Ages.  The right of the hungry to eat from the fields was part of the social safety net for the poor.  This practice was later codified in various “laws of hospitality”.  Modern farmers plant hedgerows and “insectary crops” to feed beneficial wildlife.  Biologically managed vineyards are sown with legumes and wildflowers.  Flowers replace insecticides.

“Do not plant two kinds of seed in your vineyard; if you do, not only the crops you plant but also the fruit of the vineyard will be defiled”.  Deuteronomy 22 : 9.  Editor’s Note:  Modern agronomists interpret this rule as a general injunction against mixing varieties of the same open pollinated species.  Isolation distances must be preserved to prevent cross-pollination so varieties remain pure.  (This rule does not apply to self-pollinated species because out-crossing rarely occurs).

“Isaac planted crops in that land and the same year reaped a hundredfold, because the Lord blessed him.”  Genesis 26 : 12.  Editor’s Note:  Historical seed to harvest ratios of 1 : 100 are not inconceivable.  Roman farmers routinely harvested 40 bushels of wheat per acre.  80-bushel yields were common when irrigated grain followed nitrogen-fixing cover crops of lentils, lupines, clover, or vetch.  Modern wheat varieties regularly produce 100-bushel yields.  The keys to bumper grain crops are no tillage, live soils, wide spacing of individual plants, living mulches to control weeds, companion plants to increase biodiversity, and irrigation to prevent water competition between grain and cover crops.  Farmers in the Middle Ages planted the “Holy Trinity” = 1 grain + 1 legume + 1 root crop.  For example:  Wheat, clover, and turnips.  Seeded at 50 pounds of wheat per acre, this polycrop easily yields 3,000 pounds (50 bushels) per acre = 1 : 60 seed to harvest ratio.

“But the seed falling on good soil refers to someone who hears the word and understands it.  This is the one who produces a crop, yielding a hundred, sixty, or thirty times what was sown.”  Matthew 13 : 33.  Editor’s Note:  Plant most any heritage variety of winter wheat in your garden, for example, Red Fife.  Space plants 1 foot apart equidistantly.  Mulch the ground and water as needed.  Each plant will yield 1 1/2 to 2 1/2 ounces of grain on average = approximately 1,305 to 2,175 seeds per plant = 68 to 113 bushels per acre.  You do not need “improved” or “hybrid” varieties to obtain high yields.  Good growing conditions are the most important factors.

“When you are harvesting in your field and you overlook a sheaf, do not go back to get it.  Leave it for the foreigner, the fatherless and the widow, so that the Lord your God may bless you in all the work of your hands”.  Deuteronomy 24 : 19.  Editor’s Note:  Modern farmers plant wildlife food plots or leave border rows unharvested.  Biological agriculture practice requires that farms be managed as ecosystems rather than individual fields.  The idea is to encourage large populations of many beneficial species.  More biodiversity = healthy ecology = better plant growth = higher yields.

“Do not go over your vineyard a second time or pick up the grapes that have fallen.  Leave them for the poor and the foreigner”.  Leviticus 19 : 10.  Editor’s Note:  Today, “good farming practice” means leaving as much plant residue as possible to prevent erosion and feed soil critters.  Grain fields are harvested with “header reels” to leave standing straw to slow wind and trap snow.  Farmers plant mixed species cover crops to feed earthworms over winter.  Fallen fruits are grazed, composted, or burned to break insect and disease cycles.  Vineyards and orchards are sown with weeds, legumes, wildflowers, and insectary crops to support large populations of beneficial insects.  More flowers = fewer pests.

“When you reap the harvest of your land, do not reap to the very edges of your field or gather the gleanings of your harvest”.  Leviticus 19 : 9.  Editor’s Note:  The right of the poor to glean fields is common to many cultures.  Modern farmers leave border rows unharvested.  Head rows are planted with “bee pasture”.  Strips of weeds, wildflowers, and insectary crops are sown within fields to feed beneficial insects.  Wildlife food plots and “insect refuges” are seeded in odd corners of land.  The idea is to encourage maximum populations of useful species.

Social Commentary:  In this modern world farmers comprise less than 2% of the United States population.  Most farms are located far from cities.  Fields are harvested by machines.  Thus, there are few rural poor and hardly any crops to glean.  This is in stark contrast to biblical times when 98% of the people were farmers, many of them hungry.  Today, feeding the urban poor is not easy.  Rural labor shortages mean there are few hands to pick fruits and vegetables.  Surplus crops often rot in the fields while Food Banks go empty.  The Bible is easy to read but difficult to practice.

“You shall not breed together two kinds of your cattle; you shall not sow your field with two kinds of seed, nor wear a garment upon you of two kinds of material mixed together”.  Leviticus 19 : 19.  Editor’s Note:  Ancient Jews had a passion for keeping everything separate.  This extended to cooking (do not mix meat and milk) and marriage (do not marry “gentiles” = non-Jews).  Modern agronomy has turned the old rules upside down.  Farmers now plant hybrid seeds and graze hybrid cattle on multiple species forage crops.  Science and practical experience have taught us that mixtures grow better than individual species grown separately.  Polycrops are the new “best practice”.  Grains and legumes are sown together.  Fields are planted with strips of unrelated crops.  The goal is maximum biodiversity.  Biology, not chemistry, keeps soils fertile and pests under control.

“But during the seventh year the land shall have a sabbath rest, a sabbath to the Lord; you shall not sow your field nor prune your vineyard”.  Leviticus 25 : 4.  Editor’s Note:  Long rotations break insect and disease cycles.  For example:  Farmers in Argentina rotate 7 years of field crops with 7 years of pasture.  (Alternating pasture and row crops is called “ley farming”).  7-year rotations are ideal for restoring soil structure and fertility.  Rule-of-Thumb:  Never plant the same crop on a field more than once every 7 years.  Reserving 1/7th = 14% of cropland for annual fallow is a great way to support large populations of wildlife and beneficial insects.

“A king who cultivates the field is an advantage to the land”.  Ecclesiastes 5 : 9.  Political Commentary:  Humility precedes learning.  There is much advantage in keeping leaders humble.  From a practical standpoint, a king busy growing his crops has little time for mischief.  Most people care not who runs the government as long as it leaves them alone.  “God bless us with a king who rules and does nothing”.  (Farmers around the world have inherent distrust of government.  This reticence comes from long experience:  When officials arrive, bad things happen).  Farmers who practice Biblical Agronomy tend to be independent spirits.  Many live off-grid.  The majority are socially conservative.  Most have root cellars or can their own vegetables.  Large numbers store a 2-year food supply.  “Biblical” farmers are much like the Amish:  They are part of our modern culture yet live apart from it.

“But on the seventh year you shall let it rest and lie fallow, so that the needy of your people may eat; and whatever they leave the beast of the field may eat.  You are to do the same with your vineyard and olive grove”.  Exodus 23 : 11.  Editor’s Note:  Planting monocrops year after year depletes soil fertility and promotes outbreaks of pests and diseases.  Farmers practicing Biblical Agronomy avoid these problems by keeping 7-year rotations and planting polycrops.  For example:  “The Twelve Apostles” is a multi-species forage mix including 4 grains + 4 legumes + 4 root or forb crops.  Mixed species produce more nutritious forage and higher yields.  “Tithing” 1/7th = 14% of cropland for annual fallow (weeds or mixed species cover crops) promotes large numbers of beneficial insects.  The good bugs eat the bad bugs.

“I will feed them with good pasture, and on the mountain heights of Israel shall be their grazing land”.  Ezekiel 34 : 15.  Editor’s Note:  “Mixed Farming” = growing plants and animals has been the foundation of agriculture since historic times.  The reason is simple:  Plants and animals have evolved to grow well together.  While it is possible to raise plants and animals separately, monocultures are much more susceptible to insects, diseases, and environmental stress.  Biological balance is a key principle of Biblical Agronomy.  Pastures grow better when grazed.  Crops yield more when dunged.  Animals stimulate plants to grow better.  Healthy plants keep animals in good condition.

“What the cows eschew the goats relish.  That which the goats ignore the sheep enjoy.  Upon what the sheep leave the birds feast.  Whatever the fowl demurs the worms delight.  In this way the land feeds all”.

“Thirty milking camels and their colts, forty cows and ten bulls, twenty female donkeys and ten male donkeys”.  Genesis 32 : 15.  Editor’s Note:  Smart farmers use rotation and polycrops to control pests and diseases.  The same principles apply to raising animals.  Herds should be rotated to improve pastures.  Mixed species control weeds and parasites.  For example:  Range chickens 3 or 4 days behind cattle.  Chickens eat fly maggots and keep pastures sanitary.  Every mouth eats something different and so the whole farm produces more food.

“The best medicine is the watchful eye of the herdsman”.

“Know well the state of your flocks, and pay attention to your herds”.  Proverbs 27 : 23.  Editor’s Note:  Anciently, herds grazed randomly and were moved irregularly.  Plants were overgrazed and pastures declined.   Modern farmers practice “Intensive Rotational Grazing”:  Animals are crowded into small paddocks then moved to fresh pasture every 12 to 24 hours.  Each meadow is rotated on a 30-day or longer calendar so plants have time to regrow.  Pasture rotation produces more forage and breaks parasite reproduction cycles.

“The sea coast will be pastures, with cottages for shepherds and folds for flocks”.  Zephaniah 2 : 6.  Editor’s Note:  Piling, carting and spreading manure is hard work.  “Sheep Folding” is easier:  Flocks are crowded into small fields at dusk where they urinate and defecate all night long.  At dawn, animals are turned into fresh pasture.   Fertilized ground can then be plowed and sown.  Alternatively, broadcast seed into standing vegetation then fold animals overnight.  Hooves trod seed into ground.  Trampled plants cover and protect germinating crops.  This is called “Stomp Seeding”.  Roman farmers averaged 40 to 50 bushels of wheat per acre using these methods.  Biblical Agronomy is all about balance.  Plants and animals grow well together.

“I shall become enlightened for the sake of all living things”.

Ten Agricultural Commandments:  Following is a list of biological principles for Biblical Agronomy.  Use these guidelines to make farm management decisions.

I.  Do Not Kill.  Find another way.  Use the least intrusive methods.  “Walk lightly upon the land”.

“Farmers are keepers of the earth”.

II.  Keep the Agricultural Sabbath.  Follow 7-year rotations.  Long rotations control most insects and diseases without need for human intervention.  Crop rotations improve soil tilth and fertility.

“At Nature’s table all are welcome”.

III.  Tithe for Nature.  Provide hospitality to all in need. Leave border rows unharvested.  Plant wildlife food plots.  Reserve 5% to 10% of farmland for hedgerows, windbreaks, and wood lots.  Wildlife are an essential part of the agricultural ecosystem.

“God loves all his creatures, even bugs”.

IV.  Feed the Insects.  Reserve 5% to 10% of cropland for native weeds, insect refuges, bee pasture, and insectary crops.  Conventional monocrop farms are “green deserts” without nectar or pollen for beneficial insects.  Feed the good bugs and they will protect your crops.

V.  Sow Polycultures Whenever Practical.  Plant the “Holy Trinity” and “The Twelve Apostles”.  Mixed species are the key to soil fertility and high yields.

VI.  Do Not Plow.  Practice zero-tillage whenever possible.  Symbiotic fungi are essential to plant health and nutrition.  Beneficial fungal networks must be protected at all times or soil ecology will collapse.

VII.  Keep Soil Covered at All Times.  Soil is a living organism that requires air, water, food, and shelter.  Keep it warm during winter and cool over summer.  Do not let topsoil dry out.  Prevent crusting and compaction so soil can breathe and rain can enter.  Protect fields with mulch or live plants 365 days yearly.  “Keep fields green”.

“Good farmers grow fungi.  The fungi grow the crops”.

VIII.  Feed the Fungi.  Plants feed sugar to fungi.  Fungi provide water and minerals to plants.  Trading requires live roots or fungi die or go dormant.  Plant productivity is directly related to the number and extent of fungal networks.  More fungi = higher yields.  Good farmers keep their fields covered with growing plants year-round.

“Roots in the ground all year round”.

IX.  Encourage Maximum Biodiversity.  Genesis is the heart of Biblical Agronomy.  Agriculture is all about creating life.  Ecosystem productivity and stability are directly related to number of species.  More species = healthy ecology = higher yields.  Good farmers plant many varieties to provide food and shelter for all God’s creatures.

X.  Grow Crops and Animals Together.  Plants and animals are like two sides of an arch:  Remove one and the other falls.  Mixed farms have more biological stability and greater resilience to environmental stress and economic change.  Wide diversity protects farmers from crop failures and uncertain markets.

“The Lord gave the word and great was the company of the creatures”.

The Eleventh Commandment:     “Thou shalt inherit the holy earth as a faithful steward conserving its resources and productivity from generation to generation.  Thou shalt safeguard thy fields from soil erosion, thy living waters from drying up, thy forests from desolation, and protect thy hills from overgrazing by the herds, that thy descendants may have abundance forever.  If any shall fail in this stewardship of the land, thy fruitful fields shall become sterile stony ground or wasting gullies, and thy descendants shall decrease and live in poverty or perish from off the face of the earth”.  [Walter Clay Lowdermilk, soil conservationist, radio broadcast from Jerusalem, June 1939].

Wrapping It Up:     Biblical Agronomy is not so much a rigid set of rules but rather a way of thinking about biology.  Adapt basic principles to fit local conditions.  The key is to be practical rather than zealous.  God will not smite you if you spray the locusts.

Agronomy Notes:

Bee Pasture = Plants selected for long flowering seasons and large amounts of nectar and pollen.  Wild bees and other native insects provide most of the pollination for agricultural crops.  Good farmers sow 5% to 10% of farmland with bee forage.  (If you cannot afford seed plant native weeds).

Border Rows = Crops growing along field edges.  Farmers often leave 2 to 4 rows unharvested to feed wild animals.  Border row dimensions are determined by the width of planting and harvesting machinery.

Head Rows = Empty space at field ends used for turning tractors and farm equipment.  On conventional farms head rows are covered with sod or left bare.  On biologically managed fields head rows are planted with clover, wildflowers, native weeds, or other “bee forage”.  The idea is to provide food and shelter to encourage large numbers of beneficial insects.

Hedgerows = Narrow lines of small trees or shrubs planted to contain animals, slow wind, trap snow, moderate micro-climate, and provide food and shelter for beneficial wildlife.  Ideal hedgerows are composed entirely of economic species that can be harvested for nuts, berries, fruits or other cash crops.  Plant 40 or more species per linear mile for high biodiversity.  Hedgerows support large populations of insect eating birds.

Insectary Crops = Plants with many small flowers ideal for feeding beneficial insects.  For example:  Anise, buckwheat, caraway, clover, coriander, dill, and fennel.  These can be combine harvested and the seed sold for profit.

Insect Refuges = Standing crops left unharvested so insects have undisturbed habitat for feeding and breeding.  For example:  If you mow a hay field all at once the insects have nowhere to go and nothing to eat.  The solution is to leave a strip of meadow unharvested so insect populations are preserved.  (If land is scarce sow native weeds in odd corners or other spaces unsuitable for farm machinery).

“Rotational Grazing Rule-Of-Thumb:  Eat 1/3, Stomp 1/3, Leave 1/3”.

Intensive Rotational Grazing = Crowding animals into small paddocks then moving herd to fresh pasture every 12 to 24 hours.  Pastures are rotated on 30-day or longer cycles so plants have time to regrow.  Rotational grazing produces large amounts of highly nutritious forage.  400% yield increases are possible with mixed species forage crops. Long rotations break insect, disease and parasite reproduction cycles.  (Mob grazing is a similar practice).

Ley Farming = Rotating pasture and field crops to control weeds and fertilize soil.  Combining animals in farm rotations boosts crop yields.  Manure stimulates plant growth more than equal weights of fresh or composted grass.  (Strange things happen in a cow’s stomach.  Grass goes in and super-charged fertilizer comes out.  How this happens is scientific mystery).

Living Mulches = Short plants sown to cover the soil and prevent weed growth.  Cash crops are seeded or transplanted into the living mulch using no-till equipment.  For example:  Peppers can be transplanted into an established sward of Dutch White Clover (Trifolium repens).  The clover smothers weeds and feeds nitrogen to the cash crop.

Mixed Farming = Growing a wide variety of plants and animals on the same farm.  Including pasture and hay in crop rotations.  Grazing herds on harvested fields.  Using animals to control weeds.  Spreading manure to fertilize cash crops.  Mixed farms are more biologically stable and much less susceptible to economic and environmental changes.

Mob Grazing =  Concentrating very large herds on small pastures is called “Mob Grazing”.  Density is about 800 to 1,000 cows per acre and animals are shifted every 1 or 2 hours.  Meadows are rotated on long 6 to 12 month cycles so plants regrow.  High density and long rotations mimic natural migration of buffalo and other vast herds on prairie ecosystems.  (Intensive Rotational Grazing is a closely related practice).

Mulch-In-Place = Sow a fast-growing cover crop that produces large amounts of biomass (stems and leaves).  Kill the mature cover crop with a roller-crimper or sickle-bar mower.  Seed or transplant through the mulch using no-till equipment.  Mulch-In-Place provides 90% to 95% weed control, as good or better than glyphosate (Roundup) or other conventional herbicides.

Multiple Species Cover Crops = Mixtures of plants grown to control weeds, feed livestock, and fertilize fields.  For best results sow many species to enhance biological synergy.  Mixed plants feed soil bacteria and support vast networks of beneficial fungi.  The fungi provide water and nutrients to the plants.  Basic cover crop mixes include:  2 cool season grasses + 2 cool season legumes + 2 cool season broad leaf plants + 2 warm season grasses + 2 warm season legumes + 2 warm season broad leaf plants + 2 or more root crops = 14 or more species.  Use no-till equipment to drill 20 pounds of seed per acre in 2-inch deep furrows spaced 7.5 inches apart.

Polyculture = Growing 2 or more species together.  Polycrops greatly reduce insect pests and produce large amounts of sugar to feed soil bacteria and fungi.  Most soil humus is made by bacteria that eat sugar exuded by plant roots.  Agricultural productivity is directly related to the number of polyculture species.  More species = more leaves and stems = more photosynthesis = more sugar exuded by roots = larger populations of soil microbes = faster nutrient cycling = higher yields.  Some farmers plant cover crops with 60 species!  “There is strength in numbers”.

Strip Cropping = Polyculture system adapted to farm machinery.  Divide farms or fields into narrow strips following land contours.  Plant adjacent strips with unrelated crops to maximize edge effects and increase biodiversity.  Adjust strip widths to match planting and harvesting equipment.  For best results strips should not be wider than 200 feet on flat land or 50 feet on hillsides.  Planting a variety of crops spreads economic and biological risk.  Strip cropping supports large populations of beneficial insects that keep pests under control.

Weed Farming = Manage weeds just like any other cover crop.  (A)  Fertilize and irrigate weeds to promote maximum growth, then flatten with a roller-crimper or sickle-bar mower.  Immediately seed or transplant through the weed mulch using no-till equipment.  (B)  Overseed native weeds with clover or other legumes to make a cheap multi-species cover crop.  (C)  Harvest weeds like silage using a forage chopper.  Use chopped weeds to mulch cash crops.  (D)  For biological pest control, plant weeds next to crops needing protection.  Alternatively, mow strips through tall weeds then plant cash crops down the rows.  Crops grown in weeds rarely have pest problems.  (E)  Native weeds support enormous populations of beneficial insects.  Good farmers reserve 5% to 10% of cropland for weeds.  For best results grow weeds in narrow strips within fields and around field borders.  (F)  Sow weeds to heal bare or worn-out soils.  Wildflower hay can be baled and spread for this purpose or haul weed seeds from the nearest grain elevator.  (G)  Grind weed seeds in a roller mill to make free fertilizer.  Use weed seed meal just like cotton seed meal or other organic plant food.  (H)  When insects threaten to overwhelm, soak chopped weeds in water, strain, then spray “weed tea” on plants.  Weed juice chases away most bugs.

Wildlife Food Plots = Small fields planted with grains, legumes, forbs, and root crops to feed deer, pheasants, turkeys, rabbits, and other game animals.  Wildlife plots are typically seeded on poor, wet or rocky land unsuitable for hay or cash crops.

Windbreaks = Rows of trees, shrubs, perennial Pampas grass, or other vegetation planted to slow wind, stop erosion, trap snow, and moderate micro-climate.  For best results plant windbreaks no closer than 50 feet nor farther than 150 feet apart.  Effective wind protection extends downwind 10 times average tree height.  Plant 40 species per linear mile for high biodiversity.  Windbreaks increase average yields 15% by reducing water loss from crop leaves.  (Common synonyms include:  Greenbelts, Hedgerows, and Shelterbelts).

Wood Lots = Small areas of forest grown to provide firewood.  For highest yield manage trees by coppicing:  Cut down 7-year old trees then harvest on 7-year cycles when stump or root sprouts reach 2 to 3 inches diameter.  Divide forest into 7 sections then harvest each part sequentially.  Coppiced trees live hundreds of years because the are constantly renewed.

Related Publications:     Cover Crop Primer; The Twelve Apostles; Biological Agriculture in Temperate Climates; Polyculture Primer; Strip Cropping Primer; Worm Farming; Managing Weeds as Cover Crops; Earthworm Primer; Planting Maize with Living Mulches; Living Mulches for Weed Control; Crops Among the Weeds; The Edge Effect; Organic Herbicides; Forage Maize for Soil Improvement; Coppicing Primer; Forage Radish Primer; Weed Seed Meal Fertilizer; Intensive Rice Culture Primer; Trash Farming; Pelleted Seed Primer; Upside Down Potatoes; Maize Polyculture Trial 2007 – 2016; No-Till Hungarian Stock Squash; and the Rototiller Primer.

Would You Like To Know More?     For more information on biological agriculture and practical polyculture please visit:  http://www.worldagriculturesolutions.com  — or —  send your questions to:  Eric Koperek, Editor, World Agriculture Solutions, 413 Cedar Drive, Moon Township, Pennsylvania, 15108 USA.

About The Author:     Mr. Koperek is a plant breeder who farms in Pennsylvania during summer and Florida over winter.  (Growing 2 generations yearly speeds development of new crop varieties).

THE TWELVE APOSTLES

What Is It?     “A multi-species cover crop containing 12 varieties often 4 grains, 4 legumes, and 4 root crops”.

12 Apostle mixes are frequently planted by farmers practicing “Biblical Agronomy”.

For example:  Oat, pea, turnip, rye, winter vetch, mangel-wurzel (stock beet), wheat, clover, forage radish, barley, frost bean (fava bean), and rutabaga.

Other possible species include:  Millet, sorghum, buckwheat, maize, teff, sunflower, lentil, lupine, runner bean, sunn hemp, soy bean, flax, rapeseed, safflower, kale, and many other varieties.  Choose what grows well on your farm.

“Melange:  A mixture of grains, legumes, and root crops grown to feed animals and improve soils”.

All melanges contain at least 3 components:  1 grain + 1 legume + 1 root crop = “Holy Trinity”.

“We sowed the Holy Trinity.  Father Michael blessed the crop and our cattle thrived”.

For example:  Thomas Jefferson sowed buckwheat, winter vetch, and turnips to cure “tired soils”.

There is nothing magical about the number 12.  Melanges often contained fewer species.  Farmers blended odds and ends from their granaries or whatever they could buy cheaply.

Growing several species together (polyculture) is not a new idea.  The practice dates to Roman times.  Middle Age farmers called mixed plants “melanges”.  Today, modern agronomists call them “multi-species cover crops”.

Call it what you will, but “bio-diversity” (many species) is a key principle of Biological Agriculture.  Life breeds life.  Each additional species creates more food and shelter for myriad lifeforms.  Grow multi-species cover crops and soon your soil will teem with billions of critters.  More critters = faster nutrient cycling = higher yields.

“Feed the critters and the critters will feed your crops”.

I have not purchased fertilizer (chemical or organic) in 19 years.  Truly, there is power in numbers.  More species means more money in my pocket.

Try this on your farm:  Keep your ground covered with growing plants year-round.  Never plant a crop by itself.  Always plant mixed species.  Copy nature in your fields.  You will be glad you did.

“Roots in the ground all year round”.

Agronomy Notes:

If you do not have experience with polycultures, try something simple.  Winter grains and Dutch White Clover (Trifolium repens) can be planted together at the same time.  (Broadcast clover at 12 pounds per acre).  Clover suppresses weeds and provides nitrogen to the cereal crop.  When the grain is harvested clover covers the field.  The following season mow first then seed or transplant into clover living mulch using no-till equipment.

Different sized seeds can be mixed in the same seed box and drilled into a common furrow.  Big seeds like maize, sunflower and peas break through the soil so little seeds like clover and turnips germinate easily.  Furrows spaced 7.5 inches apart are ideal for most multi-species cover crops.

If desired, seeds can be mixed with cornmeal or sawdust to provide more volume for even distribution.

Small seeds like wheat, vetch and sugar beet can be surface seeded.  For best results use pelleted seed.  Broadcast into standing vegetation then immediately flatten plants with a roller-crimper or cut with a sickle-bar mower.  Surface mulch covers and protects germinating seedlings.

Large seeds like maize, sunflower and beans are best planted underground with no-till equipment.  Surface sow large seeds only with monsoon rains or daily irrigation.

When sowing grains mix several varieties with the same maturity date.  For example:  3 varieties of wheat or 4 varieties of barley.  Planting multiple varieties often increases yields 5% to 7%.  You can also sow different species together:  Mixtures of rye and wheat are called maslin; blends of barley and oats are called dredge; a polyculture of oats, peas and beans is called bulmong.  Mixed grains have better resistance to insects and diseases.

Plant mixtures grow better than individual species.  Sow barley, pinto beans, and tillage radish in separate plots.  Plant a fourth plot with all 3 species.  Come the drought and monocrops shrivel and die, but the polycrop remains green.  Mixed species help each other.  They also support vast networks of beneficial fungi.  The fungi provide water and nutrients to the plants.

“Good farmers grow fungi.  The fungi grow the crops”.

Mixed plants capture more sunlight and produce more biomass.  Rule-of-Thumb:  A polycrop of 1 grain + 1 legume + 1 root crop produces 2 times more vegetation by weight than the same species grown separately.

Polycultures increase grain yields substantially.  For example:  Oats grown alone yielded 43 bushels per acre.  Oats grown with peas and turnips yielded 62 bushels per acre.

Rule-of-Thumb:  You need at least 8 species to get significant benefits from polycultures.  For example:  Oats, peas and turnips yielded 62 bushels per acre.  Oats grown with peas, pinto beans, Dutch white clover, Japanese long turnips, tillage radish, stock beet, and rutabaga yielded 76 bushels per acre.  More species = more biological synergy = higher yields.  For example, mixtures of 12 to 16 species out-yield blends of 8 or fewer species.  Communities of 30 species yield more forage than pastures with only 20 varieties.

Pair tall growing cash crops with short height legumes.  For example:  Sow tall heritage varieties of wheat with Dutch white clover.  Dutch clover grows only 6 inches high so it competes minimally for sunlight with companion crops.  (Planting clover with dwarf or semi-dwarf cereals reduces yields 30% to 50%.  Clover shades grass stems which reduces photosynthesis.  Less sunlight = lower yields).

Sow non-climbing beans with maize for efficient combine harvest.  Vines without tendrils are the best companion plants.  For example:  Maize planted with climbing velvet bean (Mucuna pruriens) yielded 128 bushels per acre.  Maize seeded with non-climbing pinto beans yielded 208 bushels per acre.  Similarly, oats planted with climbing peas yielded 19% less than oats seeded with dwarf peas.

Earthworm (Lumbricus terrestris) growth is determined mostly by the amount and quality of available food.  Plant monocrops and worms take 3 years to reach sexual maturity.  Sow polycrops and earthworms take only 2 years to reproduce.

Earthworms thrive on balanced diets of mixed plants.  1 acre of orchard grass (Dactylis glomerata) supported a population of 361,000 earthworms.  1 acre of 50% orchard grass + 50% Dutch white clover produced 647,000 worms per acre.  Earthworm numbers soared to 2,150,000 per acre planted with a 16 species mix of grasses, legumes, forbs, and root crops.

1,350,000 earthworms per acre feeding on a 20-variety cover crop mix produce 2,700 pounds of surface castings each day of the growing season = about 1 ounce of manure per square foot = 68 pounds of available nitrogen, 35 pounds of phosphorous, and 41 pounds of potassium per acre daily.  That is more than enough fertilizer for maize, sugar cane, potatoes, or any crop a farmer wants to grow.

“Feed the worms and they will tend your crops”.

Cereals grown with companion plants are less susceptible to lodging = falling down.  Over a 61-year period, oats grown by themselves lodged 38 times.  Oats sown with dwarf peas and turnips lodged only 11 times.  In all 11 cases full crops were harvested by cutting and swathing oats into windrows.  Peas and turnips held oat stems above ground so the grain did not spoil in the mud.  (Grain on the ground cannot be harvested due to risk of contamination by pathogenic mold and bacteria).

Weedy fields can be improved by surface planting with clover or other small-seeded legumes.  Large seeded legumes like peas and beans should be drilled with no-till equipment.  The combination of native weeds and nitrogen-fixing legumes makes a cheap mixed species cover crop that will support large populations of earthworms and beneficial insects.  For biological pest control reserve 5% to 10% of cropland for native weeds.

German farmers have a long history of planting Landsberger Gemenge” = Hill Mixture = Mountain Mixture = Waste Land Mixture = multi-species forage crop sown on land unsuitable for plowing.  Typical mixes include 1 cereal or grass + 2 legumes + 1 cabbage family plant or root crop.  For example:  Winter rye + red clover + winter vetch+ forage kale or turnip.  The combination of cereal, pulse, forb, and root crops makes an ideal balanced diet for grazing animals.  Cattle gain 2.5 to 3.5 pounds daily when feeding on forage mixtures of 4 to 5 species.

Plant mixtures extend growing seasons by increasing soil and air temperatures.  Seed tall, medium and short varieties to hold warm air near soil surface.  Multiple species can raise air temperatures 10 degrees Fahrenheit and expand growing seasons by 30 to 60 days.

Related Publications:     Crop Rotation Primer; Biblical Agronomy; The Twelve Apostles; Biological Agriculture in Temperate Climates; Polyculture Primer; Strip Cropping Primer; Worm Farming; Managing Weeds as Cover Crops; Earthworm Primer; Planting Maize with Living Mulches; Living Mulches for Weed Control; Crops Among the Weeds; and The Edge Effect.

Would You Like To Know More?     For more information on biological agriculture and practical polyculture please visit:  http://www.worldagriculturesolutions.com  — or —  send your questions to:  Eric Koperek, Editor, World Agriculture Solutions, 413 Cedar Drive, Moon Township, Pennsylvania, 15108 USA.

About The Author:     Mr. Koperek is a plant breeder who farms in Pennsylvania during summer and Florida over winter.  (Growing 2 generations yearly speeds development of new crop varieties).

WORM FARMING

“The best farmers are gardeners.”

What Is It?     Worm farming is an ancient gardening technology dating back to the Middle Ages.  The earliest written records appear 8 centuries ago.  Back then wealthy farmers fertilized their fields with animal manure.  Poor folks used mulches and earthworms (Lumbricus terrestris) to keep their gardens productive.  Today we call this Continuous Mulching = Year-Round Mulching = Deep Mulching = Sheet Mulching = Sheet Composting = Compost-in-Place.

What Do I Need?     Only simple hand tools are required:  Lawn rake, mulch fork, garden cart, 8-quart pail, flash light or lantern, and a scythe or machete to cut grass and weeds.  For large gardens or truck farms a lawnmower or forage chopper are helpful.

How To Do It:     Keep soil covered with at least 8 inches of mulch year-round = 365 days annually.  Do not leave soil bare, not even for a single day.  Pull aside mulch just enough to sow seeds or set transplants.  When plants are established pull mulch close around their stems.  Apply mulch periodically to maintain 8 to 12-inch depth.  (Mulch settles to half its original depth in a few weeks).

“Feed the worms and the worms will tend your crops.”

Pile It On!     Weeds, tree leaves, spoiled hay, straw, grass clippings, hedge trimmings, garden wastes, stable bedding, wood chips, saw dust, bark or other natural plant materials all make good mulch.  Fresh vegetation is ideal as green leaves rot quickly and contain the most nutrients.  If possible, use a variety of mulches to provide plants and earthworms with a balanced diet.

Fertilizer Not Required!     Soil amendments are rarely needed if garden is covered with a mixture of plant materials.  (Each type of mulch contains an assortment of nutrients).  Sprinkle lime, wood ash, rock dust, or other plant food over mulch as desired.  Water fertilizer into mulch or wait for rain.  Cover manure with mulch to eliminate odor and keep flies away.

“Weeds are the shepherds of the garden.”

Weed Management:     If any weeds poke through the mulch, thin them until they stand 3 to 4 feet apart.  Widely spaced weeds help crops grow better.  Weeds provide food, shelter and alternate hosts for beneficial insects.  The good bugs eat the bad bugs.  Weedy gardens rarely have pest problems.  (If you do not have any weeds plant flowers among your vegetables).

“Sow worms and seeds for bumper crops.”

Seeding Earthworms:     The night before planting take your pail and lantern to a nearby pasture, meadow or corn field.  Place 1 gallon of leaf mold, compost or damp peat moss in the bucket to keep earthworms moist.  Common earthworms come out of their burrows to feed at night so they are easy to catch.  When you have gathered sufficient worms (4 per square foot of garden), cover pail with a wet towel then place in deep shade until ready to sow.  Drop 2 to 4 earthworms in each planting hole or linear foot of furrow.  Cover gently with damp soil.

Population Ecology:     Earthworms do not travel fast; a colony spreads only 3 feet yearly.  Seeding your garden with earthworms jump-starts the colonization process.  Earthworms reproduce slowly; the average worm takes 2 to 3 years to reach sexual maturity.  Thus, the more worms you start with, the faster the population reaches critical mass = enough worms to substantially increase crop yields.  In most soils the tipping point is somewhere between 1 and 2 tons = 1 to 2 million earthworms per acre = 23 to 46 worms per cubic foot of topsoil.  (Under ideal conditions worm populations can soar to 8 tons per acre).

Critical mass is reached when crops no longer need external fertilizers (organic or synthetic).  At this point, populations of soil micro-organisms explode and nutrient cycling is so rapid that crops show no yield response to plant food.  This process requires time, typically 12 to 15 years = 4 to 5 generations of earthworms before fields can sustain commercial yields without added nutrients.

All this requires massive amounts of mulch applied 8 to 12 inches thick (which effectively limits this technology to small areas).  Earthworms eat organic matter.  More mulch = more worms = more plant growth = higher yields.  Earthworms need protein in their diets.  For example, populations double when worms eat clover rather than hay.  If practical, include nitrogen fixing legumes (clover, peas, beans and lentils) in garden mulches, or supplement with animal manure, weed seed meal, or fresh, green leaves.

“Good farmers grow fungi.  The fungi grow the crops.”

Soil Science:     Healthy farm or garden soils contain at least 8,000 pounds of “critters” per acre, about the weight of 8 dairy cows.  All these hungry mouths eat organic matter.  Covering the ground with mulch provides abundant food for the underground “herd”, especially earthworms and fungi.

Earthworms are a keystone species.  You can measure soil health simply by counting worms.  Many worms = strong soil.  Few worms = sick soil.  No worms = dead dirt.  Well managed organic soils contain 1 million worms per acre or approximately 23 earthworms per cubic foot of topsoil.  Earthworms aerate the ground and produce enough castings (manure) to grow commercial crops of anything you want to plant.

Beneficial fungi comprise about 70% of all soil life.  Microscopic, thread-like hyphae connect all plants into a field-wide web, an underground “Internet” of roots and fungi that share water and nutrients.  Plowing or cultivation destroys the fungal network, slowing plant growth and reducing yields.  Mulching protects helpful fungi by keeping soil cool and moist.  Constant moisture and moderate temperatures favor optimal fungal growth.

“Would you go to war with half an army?  Most conventional farmers waste half their soil.”

The top 2 inches of soil contain the most oxygen and organic matter.  This is the powerhouse of the soil ecology.  Over half of all soil critters live in this thin, upper layer.  Anything that disturbs this “topsoil” greatly reduces plant growth and yields.  For example:  Cultivation rips up the earth = the soil becomes too hot and too dry = plant roots cannot live in this hostile environment = the farmer wastes his best dirt.

“Cultivation is the same as scraping off the top 2 inches of soil.  Dumb idea.”

A continuous mulch is like an insulating blanket that moderates the underground environment.  Earth does not freeze in winter or bake in summer.  Pores stay open so air and water penetrate deep into the subsoil.  Wind and water erosion are eliminated.  Weed competition is controlled.  The entire soil profile is accessible to plant roots.  All these factors promote life and speed nutrient cycling.  Soil critters thrive and plants grow better.

Ramp It Up!     Worm farming is best suited to small areas (because mulch is gathered by hand).  For large areas grow mulch crops like Forage Maize (Zea mays) or Sorghum Grass (Sorghum sudanense) then harvest with a forage chopper.  Cart mulch to where it is needed then spread by hand or use a mechanical mulch spreader.  Purchase earthworms or earthworm egg capsules from a commercial worm farm.  Seed not less than 6 worms every 30 feet = about 300 worms per acre.  At this distance it will take 10 years to colonize 1 acre (209 x 209 feet, approximately).  To colonize an acre in 1 year, drop 6 worms every 3 feet (about 30,000 worms per acre).  Cover worms with damp soil and mulch to protect them from predators.

“Who needs Monsanto?  Grow mulch crops and never buy herbicides again.”

Mulch-In-Place:     Mulching large fields by hand is not practical; the cost of labor and materials is too high.  The solution is to grow a mulch crop right where it is needed.  This is called Mulch-In-Place.  Sow Winter Rye = Grain Rye = Cereal Rye = Secale cereale at 3 bushels = 168 pounds per acre.  Kill mulch crop with a roller-crimper or sickle-bar mower when plants grow 6 feet tall or when seeds reach the “soft dough” stage.  Immediately (the same day) seed or transplant through the mulch using no till equipment.  Mix earthworm egg capsules (175,000 per acre = 4 per square foot) with cornmeal or similar carrier then side-band down the row or deposit directly in furrows.

If desired, you can seed 8 to 12 pounds per acre of Dutch White Clover (Trifolium repens) along with your cash crop.  Clover fills any holes in the mulch and provides high-protein earthworm food.

6-foot rye yields 5 tons = 10,000 pounds of long-straw mulch per acre, sufficient to provide 90% to 95% weed control for 6 to 8 weeks.  This gives your crop enough time to close rows.  Once the crop canopy closes, weeds are shaded and no cultivation or spraying is necessary.

Agronomy Note:     Mulch-In-Place works with most any cover crop that grows at least 6 feet high and yields 4 to 5 tons = 8,000 to 10,000 pounds of biomass (leaves and stems) per acre.  The best mulch crops are grasses like Forage Maize (Zea mays) and Sudan Grass (Sorghum sudanense) because they take longer to rot than broad leaved plants.

Mix It Up!     Just like people, earthworms thrive on varied diets.  Earthworm populations double every 2 to 3 years on fields where multiple species cover crops are grown.  For best results sow mixtures of warm and cool season mulch crops including grasses, broad leaved plants, legumes, root crops, and wild flowers.  More plant diversity = more earthworms = higher yields.

“The best soil test is a spade full of dirt.  If the soil teems with life you will get a good crop.”

Sometimes old ways are the best.  800 years ago, worm farming was a great idea.  Today, this technology is an integral part of the New Green Revolution.  Try this on your own land:  Compare side-by-side plots, mulched versus clean cultivated gardens.  You will be amazed at the difference.  Year-round mulching really is the easiest way to farm or garden small areas.

Related Publications:     Biological Agriculture in Temperate Climates; Crop Rotation Primer; Biblical Agronomy; The Twelve Apostles; Managing Weeds as Cover Crops; Weed Seed Meal Fertilizer; Trash Farming; No-Till Hungarian Stock Squash; Earthworm Primer; Planting Maize with Living Mulches; Living Mulches for Weed Control; Crops Among the Weeds; Forage Maize for Soil Improvement; Swamp Potatoes; Upside Down Potatoes; Wildcrafted Potatoes; Biological Control of Citrus Greening; The Edge Effect.

Would You Like To Know More?    Please visit:  http://www.worldagriculturesolutions.com  — or —  send your questions to:  Eric Koperek, Editor, World Agriculture Solutions, 413 Cedar Drive, Moon Township, Pennsylvania, 15108 United States of America  — or —  send an e-mail to:  Eric Koperek = worldagriculturesolutions@gmail.com

“Can Sunnhemp Outgrow Morning Glory?”

I get the most interesting questions on my website.  Some provoke editorial response:

Biological agriculture is a race between crops and weeds.  The farmer’s job is to give his crops an unfair advantage in competition for sunlight.  One way is growing cover crops to smother invasive weeds.  Sunnhemp (Crotalaria juncea) is an effective mulch crop for weed suppression.

Wild Morning Glory (Ipomoea species) is the bane of my existence.  Closely related to sweet potatoes, morning glories thrive in poor soils, are immune to most insects, and grow so rapidly that they overwhelm all surrounding plants.

In Butler County (30 miles north of Pittsburgh, Pennsylvania) morning glories are like intermittent epidemics.  Some years you rarely see a vine.  Other seasons your fields are covered.

I returned from a business trip to find my neighbor’s back-40 strangled by herbicide resistant morning glories.  Vines blanketed the land like Kudzu (Pueraria montana).  He sprayed tankfuls of glyphosate trying to save his soybeans.  All that did was make the weeds mad.   6 weeks later, vengeful vines obliterated his GMO corn.

My neighbor was hitching up his 8-bottom moldboard when I offered to help.  George has a dim view of “organic farming” but he likes spending money even less, so it was not a difficult decision:  Plow everything under or let Eric make a fool of himself.  Hmm. . .

My solution:  60 pounds per acre of rotary seeded Sunnhemp followed by a 30-year-old sickle-bar mower.  Sow-And-Mow eliminated his weed problem.  The Sunnhemp reached 8 feet high in 7 weeks, shading all competing vegetation.

Next, I broadcast 12 pounds per acre of Dutch White Clover (Trifolium repens) into the standing cover crop then mowed the Sunnhemp with a bush hog.

In Autumn I no-till drilled 60 pounds per acre of pelleted Winter Rye (Secale cereale) into the mature clover.  The field required no other work until grain harvest the following summer.

There is a lesson to be learned here:

RULE:     Always seed cover crops at maximum rates for weed control.

RULE:     Do not plow, disk, or harrow — this only encourages weed germination.

RULE:     Keep fields covered with growing crops at all times to kill weed seedlings.

Follow these rules and weeds will NEVER get established in your fields.

This is what Biological Agriculture is all about:  Crop competition keeps weeds controlled without need for mechanical cultivation or chemical herbicides.  Let nature do the heavy lifting.

Related Publications Include:     Managing Weeds as Cover Crops; Trash Farming; Planting Maize with Living Mulches; Living Mulches for Weed Control; and Crops Among the Weeds.

Other Articles of Interest:     Crop Rotation Primer; Weed Seed Meal Fertilizer; Organic Herbicides; Pelleted Seed Primer; and Forage Maize for Soil Improvement.

Would You Like to Know More?     Please visit:  http://www.worldagriculturesolutions.com  — or —  send your questions about biological weed control to:  Eric Koperek, Editor, World Agriculture Solutions, 413 Cedar Drive, Moon Township, Pennsylvania 15108 United States of America  — or —  send an e-mail to:  worldagriculturesolutions@gmail.com

About the Author:     Mr. Koperek is a plant breeder who farms in Pennsylvania during summer and Florida over winter.  (Growing 2 generations yearly speeds development of new crop varieties).

 

WEED SEED MEAL FERTILIZER

WHAT IS IT?     Weed seeds = Elevator Screenings are what is left when grain is run through a seed cleaner.  Clean grain goes into a bin and residues = screenings are disposed.  Most grain elevators give weed seeds away free to any farmer willing to haul them.  Some elevators charge nominal sums for screenings because they can be fed to animals.  For example, 10% to 15% weed seeds can be mixed into chicken feed.

HOW TO MAKE WEED SEED MEAL:     Seeds of most plants make good fertilizer.  The trick is to mill = grind seeds into a coarse meal or flour so they do not sprout.  Most farmers use roller mills, hammer mills, or gristmills to grind weed seeds.  If milling equipment is not available weed seeds can be baked in shallow (2 inch ~ 5 centimeter deep) pans at 350 degrees Fahrenheit ~ 176 degrees Centigrade for 1 hour to kill seeds.  Baked weed seeds make very slow release organic fertilizer ideal for plants (like roses) sensitive to excess nitrogen.

If weed seeds are not available, substitute any type of waste or spoiled grain, for example, wet or dry brewer’s grains.  There is no standard analysis for weed seed meal; nutrient content varies depending on species and proportion which change by locality and season.  It is good practice to test weed seed samples yearly so fertilizer application rates can be adjusted as needed.

Below are some average nitrogen (N), phosphorous (P), and potassium (K) values for rough calculations.  Note:  lb = pound.  1 pound = 0.454 kilogram.  1 American ton = 2,000 pounds = 908 kilograms = 0.908 metric ton.  1 metric ton = 1 megagram = 1,000,000 grams = 1,000 kilograms = 2,200 pounds = 1.1 American tons.

WEED SEED MEAL & SIMILAR AGRICULTURAL WASTES.  FERTILIZER ANALYSIS IN PERCENT BY WEIGHT (Nitrogen : Phosphorous: Potassium):

 

BARLEY (spoiled, dry):  1.75% N : 0.75% P : 0.50% K = 35 lb N + 15 lb P + 10 lb K per ton (Manitoba 2011)

BEANS, SOUP (broken, dry):  4.0% N : 1.20% P : 1.30% K = 80 lb N + 24 lb P + 26 lb K per ton (New York 1988)

BREWER’S GRAINS (dry):  4.53% N : 0.47% P : 0.24% K = 90 lb N + 9 lb P + 4 lb K per ton (Pennsylvania 2012)

BREWER’S GRAINS (wet):  0.90% N : 0.50% P : 0.05% K = 18 lb N + 10 lb P + 1 lb K per ton (Pennsylvania 2012)

CANOLA SEED MEAL:  6% N : 2% P : 1% K = 120 lb N + 40 lb P + 20 lb K per ton (Saskatchewan 2014)

CASTOR BEANS (pressed):  5.5% N : 2.25 % P : 1.125% K = 110 lb N + 45 lb P + 22 lb K per ton (Egypt 2012)

COFFEE GROUNDS (dry):  2.0% N : 0.35% P : 0.52% K = 40 lb N + 7 lb P + 10 lb K per ton (Uganda 2015)

CORN, DENT (spoiled, dry):  1.65% N : 0.65% P : 0.40% K = 33 lb N + 13 lb P + 8 lb K per ton (Maryland 2014)

COTTON SEED (whole):  3.15% N : 1.25% P : 1.15% K = 63 lb N + 25 lb P + 23 lb K per ton (USDA 2015)

COTTON SEED (pressed):  4.51% N : 0.64% P : 1.25% K = 90 lb N + 12 lb P + 25 lb K per ton (USDA 2015)

COTTON SEED MEAL:  6.6% N: 1.67% P : 1.55% K = 132 lb N + 33 lb P + 31 lb K per ton (Egypt 2012)

COWPEAS (broken, dry):  3.10% N : 1.00% P : 1.20% K = 62 lb N + 20 lb P + 24 lb K per ton (California 2014)

FLAXSEED = LINSEED MEAL:  5.66% N : 0.87% P : 1.24% K = 113 lb N + 17 lb P + 24 lb K per ton (Manitoba 2008)

OATS (broken, dry):  2.00% N : 0.80% P : 0.60% K = 40 lb N + 16 lb P + 12 lb K per ton (New York 2010)

RICE BRAN:  4.00% N : 3.00% P : 1.00% K = 80 lb N + 60 lb P : 20 lb K per ton (India 2015)

RICE, BROWN (spoiled, dry):  1.0% N : 0.48% P : 0.32% K = 20 lb N + 9 lb P + 6 lb K per ton (California 2016)

RICE HULLS = HUSKS:  1.9% N : 0.48% P : 0.81% K = 38 lb N + 9 lb P + 16 lb K per ton (Philippines 2014)

RICE, WHITE (broken):  1% N : 0.21% P : 0.27% K = 20 lb N + 4 lb P + 5 lb K per ton (California 2016)

SOYBEAN MEAL:  7.0% N : 2.0% P : 0.0% K = 140 lb N + 40 lb P + 0 lb K per ton (Brazil 2011)

WEED SEED MEAL:  2.7% N : 0.90 % P : 0.90% K = 54 lb N + 18 lb P + 18 lb K per ton (Hungary 2013)

WEED SEED MEAL:  3.02% N : 0.56% P : 0.77% K = 60 lb N + 11 lb P + 15 lb K per ton (Saskatchewan 2015)

WHEAT, HARD RED WINTER (broken):  2.00% N : 0.85% P :0.50% K = 40 lb N + 17 lb P + 10 lb K per ton (Kansas 2011)

For comparison, fresh dairy cow manure (86% water) contains 0.60% Nitrogen : 0.15% Phosphorous : 0.45% Potassium = 12 lb N + 3 lb P + 9 lb K per ton.  Cow manure is the traditional standard against which all other organic fertilizers are measured.

For slow release fertilizer mill weed seeds into coarse flakes or meal.  Grind weed seeds into powder for fast acting fertilizer.

WEED SEED MEAL APPLICATION RATES:     Calculate application rates according to soil test recommendation for desired crop.  Minimum application rate is 1 ton = 2,000 pounds per acre ~ 5 pounds or 1 gallon per 100 square feet ~ 2 Tablespoons or 2/3 ounce per square foot.  Apply 1 pound of weed seed meal for every 25 feet of row or trench.  Mix 1/2 to 1 cup of weed seed meal in each bushel (8 gallons) of potting soil.

Average density of weed seed meal = 0.3125 to 0.40 ounce per Tablespoon ~ 5 to 6.5 ounces per cup ~ 20 to 25.6 ounces per quart ~ 80 to 102.4 ounces per gallon ~ 5 pounds to 6 pounds 6.4 ounces per gallon ~ 40 to 51 pounds per bushel (8 gallons).  1 ton = 2,000 pounds weed seed meal = 40 to 50 bushels.

For example:  200 bushel per acre corn crop requires 200 pounds of nitrogen per acre.  200 pounds N divided by 54 pounds of nitrogen per ton of weed seed meal = 3.70 ~ 4 tons of weed seed meal needed per acre of corn.  Weed seed meal can be tilled into the earth by conventional plowing, broadcast on soil surface, side banded down rows, or drilled into furrows or trenches.

For feeding earthworms broadcast weed seed meal (1 ton per acre or 2 Tablespoons per square foot) on soil surface.  Reapply throughout the growing season when meal is no longer visible.

AGRONOMY NOTES:

–>     Weed seed meal is a natural = biological = organic fertilizer that requires decomposition before nutrients are available to plants.  Bacteria, fungi and many other soil organisms eat weed seed meal then excrete nutrients in plant available forms.  As soil organisms live and die, nutrients are constantly recycled = most fertilizer is tied up in the bodies of soil “critters” and is only available to plant roots in small amounts over extended time periods.  Thus, weed seed meal is a slow release fertilizer that will not burn plant roots or leach from the soil.

–>     Cold, wet soils delay weed seed meal decomposition.  Warm, moist soils speed fertilizer availability.  Early season crops may show signs of nitrogen deficiency (light green leaves) if soils are especially cold or poorly aerated = oxygen deficient.  This is a temporary condition that will ordinarily correct itself in 2 or 3 weeks.  Every 5 degree Fahrenheit temperature increase doubles microbial activity.  As soils warm, nutrient cycling speeds up and more fertilizer is released for absorption by plant roots.

–>     If crops must be seeded in cold soils, apply weed seed meal 2 to 3 weeks before planting so soil organisms have more time to decompose fertilizer and make nutrients available to plants.

–>     Weed seed meal is an indirect fertilizer — it feeds soil organisms rather than plant roots.  Large amounts of weed seed meal can be applied without crop damage or nutrient loss because the fertilizer is held by soil biology rather than soil chemistry.  Thus, nutrients can be banked = stored for use by following crops.  Weed seed meal has a “half-life” of several years.  Nutrients are continually released in small amounts long after fertilizer is applied.

–>     Weed seed meal works best on soils managed biologically.  Chemically managed soils typically have smaller populations of soil organisms.  Fewer “critters” slows nutrient cycling and restricts fertilizer absorption by plant roots.

–>     To use LIVE weed seeds as fertilizer broadcast seeds into a standing cover crop like Red Clover (Trifolium pratense).   Earthworms, ants, beetles and other critters eat the weed seeds.  Clover kills any weeds that germinate.  Caution:  Do not try this unless you have a tall, aggressive cover crop that blankets the soil with dense shade.

RELATED PUBLICATIONS:     Crop Rotation Primer; Biblical Agronomy; The Twelve Apostles; Managing Weeds as Cover Crops; Trash Farming; No-Till Hungarian Stock Squash; Planting Maize with Living Mulches; Living Mulches for Weed Control; Organic Herbicides; Pelleted Seed Primer; Crops Among the Weeds; Forage Maize for Soil Improvement; Forage Radish Primer; and Rototiller Primer.

WOULD YOU LIKE TO KNOW MORE?     Contact the Author directly if you have any questions or need additional information on fertilizing soils with weed seed meal.

Please visit:  http://www.worldagriculturesolutions.com  — or —  send your questions to:  Eric Koperek, Editor, World Agriculture Solutions, 413 Cedar Drive, Moon Township, Pennsylvania, 15108 United States of America  — or — send an e-mail to:  Eric Koperek = worldagriculturesolutions@gmail.com

ABOUT THE AUTHOR:     Mr. Koperek is a plant breeder who farms in Pennsylvania during summer and Florida over winter.  (Growing 2 generations yearly speeds development of new crop varieties).

EARTHWORM PRIMER

“Biological Agriculture” relies on earthworms and other soil critters to do what plows and synthetic chemicals do in conventional agronomic systems.  Follow the advice below to encourage worm populations in your fields:

–>     There are many species of earthworms around the world.  The most common agricultural species in North America and Europe are the Common Garden Earthworm = Nightcrawler = Lumbricus terrestris, and the Manure Worm = Redworm = Eisenia foetida.  These are the most prevalent species sold by worm hatcheries for fish bait and farming.

–>     Nightcrawlers dig vertical burrows deep into the subsoil.  At night the worms rise to the soil surface to feed = they drag bits and pieces of leaves and other organic matter down into their tunnels.  Walk through a field at night with a flashlight and you will see many earthworms.

–>     Manure worms live close to the soil surface and do not dig vertical burrows.  Redworms are specialized to eat manure and so they are rarely seen except around the base of compost piles or in fields where many animals graze.

–>     31 nightcrawlers or manure worms per ounce; 500 worms per pound; 1,000,000 worms = 2,000 pounds = 1 ton.  1 average earthworm (Lumbricus terrestris) or manure worm (Eisenia foetida) from a commercial hatchery weighs 0.002 pound = 0.032 ounce = 0.9072 gram.

–>     Active, adult earthworms (Lumbricus terrestris) eat their body weight in soil and organic matter daily.  Sluggish worms, immature worms, and worms of other species may eat only 10% to 30% of their body weight each day.  1,000,000 common earthworms per acre (about 23 worms per square foot of topsoil 12 inches deep) = 1 ton of earthworm castings = worm manure DAILY during the growing season.

–>     Usage Note:  1 earthworm cast, 2 earthworm casts, many earthworm castings.

–>     Average daily worm cast is about 0.90 gram although weight of surface casts is considerably greater and varies widely.  Average surface cast weight is approximately 10 to 14 grams or about 0.30 to 0.50 ounce.  Surface worm cast weight ranges up to about 2 ounces in temperate climates and considerably more in tropical areas, depending on worm species, soil type, and available food.  For example, 1 average adult earthworm (2 to 3 years old) living in a bed of compost in a tropical climate can produce 10 pounds = 4.54 kilograms of castings annually ~ 12.4 grams ~ 0.43 ounce of castings daily.

–>     Average surface cast volume is approximately 1 Tablespoon = 15 milliliters (plus or minus 7 milliliters).

— >     Earthworms are most active in early spring and mid fall when weather is cool and moist.  Ideal soil temperature = 65 degrees Fahrenheit.  Earthworms are less active during hot, dry summer months.  Earthworms rise to the surface to feed at night then sound to lower soil depths each morning when temperatures rise.

–>     Do not plow in spring or fall if practical as this kills many worms.  Do not plow, cultivate, or spray in early evening, after dark, or early in the morning as this kills many worms.  The best time to till, cultivate, or spray is in the afternoon when temperatures are highest and worms have retreated to cooler soil depths.

–>     Keep fields planted with cover crops in spring and fall to feed worms.  They need much food at this time.

–>     Don’t leave soil bare over winter.  Protect winter fields with an insulating blanket of crop residues, mulch, or cover crops.  1 or 2 inches of organic matter can double earthworm populations.

–>     Earthworm populations increase in direct proportion to the amount of organic matter on the soil surface = leaves, twigs, straw, et cetera.  More cover = more protection & more food = higher worm populations.  Keep the soil mulched or covered with growing plants at all times.  2 inches of mulch double worm populations compared to cornfields where whole stalks are left on soil surface.

–>     Baby earthworms when they hatch from their cocoons = egg cases are very small, only 1/2 to 3/4 inch long.  Earthworms are extremely vulnerable when first hatched.  Do not plow, cultivate, or spray when worms are hatching.

–>     Earthworms need protein in their diet.  Worm populations double on legume fields compared to grass fields.  Earthworms especially favor clovers, particularly white clover.  Include legumes in field rotations, pastures & hay fields, cover crop mixes, and living mulches.

–>     Earthworms breed and grow very slowly.  Baby worms take 2 to 3 years to mature.  A plentiful, steady food supply is essential to support maximum breeding and population growth.  More organic matter (roots, stems, leaves) = more food = faster population growth = more worms.

–>     Earthworms do not spread rapidly.  A worm colony might spread 3 feet in a year.  That’s as fast as earthworms go.  To “seed” worms drop 6 nightcrawlers every 30 feet then immediately cover with a generous heap of mulch, compost, or manure = whatever worms are used to eating.  It takes at least 10 years for worm colonies spaced 30 feet apart to spread across an acre-sized field.  1 acre = 43,560 square feet = 4,840 square yards ~ 0.404 hectare.

–>     Adult worms are particularly sensitive to dietary changes.  For example, worms raised in hatcheries die if placed in corn fields because they have problems adapting to new, strange foods.

–>     Do not try to seed Manure Worms = Eisenia foetida in crop fields.  The manure worms will die because they are not adapted to this environment.  Use only nightcrawlers = Lumbricus terrestris for agricultural development, mine reclamation, terraforming, reforestation, and similar environmental restoration projects.

–>     If you need to seed worms, talk to the hatchery and ask for their best deal on earthworm cocoons.  Baby worms adapt quickly to any food available.  Mix egg cases gently with screened peat moss, corn meal, sifted compost, or similar carrier then “plant” with a common grain drill.

–>     Switching from conventional tillage to no-till does not happen overnight.  Conversion speed is entirely dependent on earthworm food supplies.  There is no solution for worms’ low natural reproduction rates.  Buying more worms or egg cases won’t make the process go any faster.  You can’t fix this problem by throwing money at it.  Patience is required.  You won’t see substantial improvements in soil structure or fertility until the fourth or fifth year of no-till ~ 2 earthworm generations.  Dramatic differences become smack-upside-the-head obvious by the 7th or 8th year without plows ~ 4 worm generations.  Conversion speed is controlled by how many tons of organic matter are added to each field.  Start looking at crops in terms of their biomass production.  This game is all about weight.  The farmer with the most tons wins!

–>     Tillage kills earthworms.  Loses depend on plow type, tillage depth, and time.  Chisel plows are the most destructive, disk plows slightly less so.  Old fashioned moldboard plows are the least destructive of all conventional tillage implements.  Chisel plows kill 3 times as many earthworms as moldboard plows.

–>     RULE:  Less tillage is better than more tillage.  Shallow tillage is better than deep tillage.  “Warm tillage” (afternoon & summer) is better than “cool tillage” (spring, fall, morning, evening, and night).

–>     Till just enough to get your crop in the ground.  Disturb the soil as little as possible.  All you need is a small hole to set transplants or a narrow slot to sow seeds.  It is rarely necessary to till more than 2 inches deep (unless you are planting potatoes).

–>     No-Till is better than strip till which is better than ridge till which is better than whole surface conventional plowing.

–>     Rear mounted rototillers are ideal tools for shallow tillage.  For example:  Broadcast winter wheat and Dutch White Clover = Trifolium repens into standing weeds or cover crop.  Mow vegetation then rototill only 2 inches deep to get seeds into the ground.  Irrigate to firm seedbed or wait for rain.  Your field will look rough and trashy but the litter is necessary to prevent wind and water erosion.  Some seeds will be buried too deep, others too shallow, but enough will germinate and survive to produce a good crop.  If soil is too wet, omit rototilling.  You will still make a profitable crop.  Small seeds do not absolutely need to buried in earth.  Cut weeds or nurse crop will cover and protect seed.

–>     Earthworms do not “like” to eat maize leaves and they especially dislike whole corn stalks and cobs.  Continuous corn = planting maize in the same field year after year reduces earthworm populations to minimal levels.  For best results use a stalk chopper or forage chopper to shred dead corn plants so they decompose faster.  Plant maize into a living mulch of Red Clover = Trifolium pratense or other nitrogen fixing legume.  Follow corn with fall turnips or other cover crop to feed and protect worms over winter.  Rotate corn with legumes or other broad leaf cover crops.  Do not follow maize with a grass or cereal crop unless also planted with a companion crop of clover or other legume.  Broad ecological diversity favors large earthworms populations.  Translation:  Worms like a varied, balanced diet.

Example:     Plant forage maize at 80,000 to 100,000 seeds per acre to kill weeds.  Flatten with a roller-crimper or cut with a sickle bar mower after 70 days (18 tons biomass) or approximately 110 days (30 tons biomass per acre).  This is called Mulch-In-Place.  Direct seed pumpkins or squash through the corn mulch with a no-till seeder.  At the same time, broadcast Dutch White Clover = Trifolium repens or other low growing legume over field.  Clover fills any gaps in the mulch and provides earthworms with a “balanced diet”.  Result:  95% or better weed control and few insect pests.  Mulch keeps fruits clean so farmer gets premium prices for his pumpkins.

Note:     Mulch-In-Place is used to grow crops without herbicides.  Popular mulch crops include Winter Rye = Cereal Rye = Secale cereale in temperate climates and Sunn Hemp = Crotalaria juncea in tropical and subtropical climates.

–>     Adult earthworms can live 9 or more years in captivity.  How long worms live in the wild is unknown.

–>     Worms constantly maintain their burrows which often extend 5 to 6 feet into the subsoil.  About the diameter of a pencil, worm holes are essential for aeration and drainage of natural soils.  Fields with populations of 1 million earthworms per acre typically contain approximately 900 to 1,200 MILES of tunnels.  These tubes are lined with “earthworm cement”, a natural glue that keeps tunnels open many years after resident earthworms have died.  Plant roots follow earthworm burrows deep into the subsoil where moisture levels are relatively constant.  This is why crops grown in biologically managed fields have considerable drought resistance.  (Crop roots also follow weed roots into the subsoil, especially weeds with deep taproots.  This is why melons grown in weeds make a crop in dry years while clean cultivated vines shrivel and die).

–>     If agricultural wastes are plentiful earthworms can be fed just like crop plants on an irrigation schedule.  Apply weed seed meal, spoiled corn meal, dried brewer’s grains or similar DRY organic “fertilizer” at 2 Tablespoons (1/8th cup) per square foot ~ 1 ounce per square foot ~ 5 pounds per 100 square feet ~ 1 ton (2,000 pounds) per acre.  Apply WET materials like spent brewer’s grains or fresh cow manure at 8 Tablespoons (1/2 cup) per square foot ~ 4 ounces per square foot ~ 25 pounds per 100 square feet ~ 5 tons per acre.  Broadcast worm food on soil surface.  Reapply as needed when food is eaten = no longer visible on soil surface.

–>     Ammonia based nitrogen fertilizers kill earthworms.  The worst form is anhydrous ammonia gas.  Liquid ammonia fertilizers are far less injurious.  Note:  Organic fertilizers can also be lethal.  Excessive amounts of manure lagoon effluent decimate worm populations.  It is good practice to irrigate before applying ammonia or any fertilizer, chemical or organic.  (Irrigation prevents plants from absorbing too much fertilizer at once.  Over-fed plants attract insect pests).

–>     RULE:  Chemical fertilizers (or manure lagoon effluents) are best applied in small amounts throughout the growing season, ideally diluted in irrigation water.  For best results do not apply fertilizers to bare soils; apply nutrients only to growing plants.  Earthworms are quite sensitive to concentrated chemicals, organic or synthetic.

–>     To stabilize ammonia in animal manures mix with 5% phosphate rock powder by weight (100 pounds of phosphate rock per ton = 2,000 pounds of manure).  Store under cover until needed.  Spread or incorporate manure on field then immediately seed with Buckwheat (Fagopyrum esculentum) or other phosphorous absorbing cover crop.  (Mixing phosphate rock with manure greatly increases phosphate availability to crops.  Organic acids in manure make phosphorous soluble).

–>     Concentrated chemical fertilizers (especially nitrogen) decrease soil organic matter and earthworm populations.  Spread supplementary organic matter on fields where chemical nutrients are applied.  Whenever practical use organic fertilizers to encourage earthworm growth.

–>     How Earthworm Populations Vary by Soil Type and Land Use

50,000 worms/acre ~ 1  worm/square foot:  Moldboard Plowed Continuous Corn; Acid Peat Soils.

80,000 worms/acre ~ 2 worms/square foot:  No-Till Continuous Corn with Herbicide.

150,000 worms/acre ~ 3 worms/square foot:  Fine Gravel Soils; Coarse Sandy Soils; Medium & Heavy Clay Soils.

170,000 worms/acre ~ 4 worms/square foot:  Bare Earth Orchards (Conventional Cultivation); Alluvial = Silt Soils; Light Clay Soils; Heavy Loam Soils.

225,000 worms/acre ~ 5 worms/square foot:  Medium Loam Soils; Fine Sandy Soils.

250,000 worms/acre ~ 6 worms/square foot:  Chisel Plowed Corn & Soybeans Rotation; Chisel Plowed Continuous Soybeans; Light Loam Soils.

500,000  worms/acre ~ 12 worms/square foot:  No-Till with Herbicides.

650,000 worms/acre ~ 15 worms/square foot:  Moldboard Plowed Continuous Soybeans.

1,000,000 worms/acre ~ 23 worms/square foot:  Biological No-Till (Rye Mulch-In-Place); Orchards with Mixed Grass & Legume Sod; Undisturbed Tall Grass Prairies & Hay Fields; Natural Alpine Meadows.

1,300,000 worms/acre ~ 30 worms/square foot:  Biological No-Till with Mixed Species Cover Crops; Fields Fallowed 5 Years (Mostly Broad Leaf Weeds).

2 million worms/acre ~ 46 worms/square foot:  Continuous Clover Living Mulch; Organic Gardens; Dairy Pastures; Manure Fertilized Fields (22 Tons per Acre Yearly).

3 million worms/acre ~ 69 worms/square foot:  Year-Round Mulch 8 Inches Thick (Vineyards & Berry Farms); Sheet Composting 12 Inches Thick (Orchards); High Humus Organic Gardens; Raised Beds Filled with Compost, Leaf Mold, or Manure.

4 million worms/acre ~ 92 worms/square foot:  Undisturbed Temperate Deciduous Forests with Deep Leaf Litter; Intensively Grazed Alpine Pastures.

5 million worms/acre ~ 115 worms/square foot:  Temperate Rain Forests in Oregon & Washington.

6 million worms/acre ~ 138 worms/square foot:  Intensive Rotational Grazing Dairy Pastures; Manure Fertilized Fields (44 Tons per Acre Yearly).

7 million worms/acre ~ 161 worms/square foot:  Greenhouse Beds 3 Feet Deep Filled with Composted Manure.

8 million worms/acre ~ 184 worms/square foot:  New Zealand Sheep Pastures (Intensive Rotational Grazing).

Note:     Numbers are approximate.  Expect considerable variation between countries, climatic zones, elevation above sea level, and land management practices.  Earthworms do not thrive in acidic soils, poorly drained soils, rocky or sandy soils, or tight heavy clays.  The most important environmental factor for earthworm survival is ORGANIC MATTER.  Earthworm numbers increase or decrease dramatically depending on the amount of available food.  Highest populations occur on soils where plants grow year-round, and on soils covered with substantial depths of leaf litter or other plant materials.  To estimate worm populations use a tape measure and straight-edged garden spade, dig a 1 cubic foot soil sample, then carefully break apart the soil and tally earthworm numbers.  Multiple samples per acre yield more accurate estimates.

–>     1 million earthworms per acre is the Holy Grail for most farmers.  This goal is unreachable with conventional farming practices.  To increase worm populations on a field-scale basis requires a long-term soil conservation strategy including crop rotations, cover crops, living mulches, and reduced tillage.  Additional measures such as improved drainage (vertical mulching or tile lines), increased aeration (subsoil ripping or keyline plowing), and erosion control (terraces, contour planting and strip cropping) may also be required.  Overriding all is the logistics of food supply = providing sufficient tonnage of organic matter to feed an army of earthworms and other soil critters.  This is rarely accomplished unless the soil is covered with growing plants 365 days each year.

–>     A watershed management plan is recommended as more water = more vegetation = higher earthworm populations.  The goal is to capture and store every drop of rain that falls upon your land.  Passive or active irrigation may be needed to maintain worm populations at desired levels.

–>     Reaching the goal of 2 or 3 million earthworms per acre is nearly impossible without some form of “mixed agriculture” = crops and farm animals.  Animals provide manure needed to feed large numbers of worms.

–>     Cow manure applied at 1 pound per square foot ~ 22 tons = 44,000 pounds per acre yearly is sufficient to maintain populations of 1 million earthworms per acre (on fields where plants are grown year-round = 365 days annually).

–>     Earthworm populations soar when pastures are managed by intensive rotational grazing or mob grazing.  High concentrations of livestock (300 to 1,500 Animal Units per acre per day) deposit vast quantities of manure.  Fresh manure is excellent worm food.  (1 Animal Unit = 1 AU = 1,000 pounds of live animal weight, regardless of species).

–>     The ancient Roman practice of cattle penning relies on earthworms to help restore “tired”, “weak”, or “sick” fields.  Erect temporary fencing around land to be healed.  Broadcast seed or spread wildflower hay over soil.  Fill enclosure with livestock until land is “well crowded” = animals have just enough room to turn around ~ 8 x 8 feet = 64 square feet per cow ~ 680 cows per acre.  Feed livestock in pen until land is “well dunged and trodden” = 1/2 to 1 pound of manure per square foot ~ 10 to 20 tons of manure per acre = move livestock to new pen every day or every other day.  Cattle stomp seed into earth.  Earthworms and dung beetles till soil.  Manure and urine fertilize ground.  Pastures or fields are “enlivened” = revived by intensive dose of organic matter which causes soil critter populations to soar.  Soil organisms jump start biological nutrient recycling system which supports land revegetation.  Earthworms provide natural soil restoration without tractors, diesel fuel, or synthetic chemicals.

–>     Greek philosophers first noted the link between earthworms and improved crop growth.  This observation led to the development of worm farming practiced by cottagers and other small landholders who did not have cows or draft animals to produce manure for fertilizer.  In spring spread cut weeds and other green plant materials over garden.  Apply mulch thickly = 8 inches deep.  This was the original green manure.  In fall, rake tree leaves and spread over garden 8 inches deep.  Keep garden covered with weeds and leaves year-round.

The night before planting, take a lantern and collect earthworms from hay fields or pastures.  Put worms in a pail with damp moss or leaf mold to keep the “wrigglers” from drying out.  Set several worms with each seed or transplant.  cover immediately with soil and just enough mulch to lightly shade the soil.  When plants are established tuck mulch close around their stems.  Water garden as needed.  Do not spade, fork, plow, till, hoe, or cultivate soil — just plant, mulch, and harvest.  Continuous mulch feeds and protects earthworms and topsoil.  You can run entire farms on nothing but fresh cut weeds and native earthworms.  Space rows widely so there are sufficient weeds to mulch crops liberally.

–>     Over a typical 5 to 6 month growing season, 1 million earthworms per acre will excrete 150 to 180 TONS of worm casts.  These are deposited throughout the soil profile from the surface to approximately 6 feet deep.

Note:  This is a vast amount of nutrients ~ 6.88 to 8.26 pounds of earthworm castings per square foot!  Where does all the fertilizer go?  There are far more available nutrients than any crop could possibly absorb.  This is a mystery.  Nutrient recycling must be extremely rapid with most of the fertilizer elements held within soil critters and organic matter.

–>     Fertilizer Analysis of Surface Earthworm Casts Collected Nightly for 31 Days in July 2011 from 16 Organic Farms in Austria:

2.56% Nitrogen : 1.31% Phosphorous : 1.56% Potassium: 3.69% Calcium = 51.2 pounds Nitrogen + 26.2 pounds Phosphorous + 31.2 pounds Potassium + 73.8 pounds Calcium per ton of earthworm casts.  Average organic matter content of earthworm casts sampled = 7.1% by dry weight.  50 casts bulked for each sample.  16 farms x 31 days = 496 samples total.

–>     Average Nutrient Concentration in Earthworm Casts:

5x Nitrogen (500% more N than found in parent soil)

7x Phosphorous (700% more P than found in parent soil)

10x Potassium (1,000% more K than found in parent soil)

1.5x Calcium (150% more Ca than found in parent soil)

3x Magnesium (300% more Mg than found in parent soil)

Earthworms are living fertilizer factories.  They ingest their weight in soil and organic matter daily then excrete manure containing concentrated plant nutrients.  These nutrients are highly available = easily absorbed and will not “burn” plant roots.  Earthworm casts are rich sources of essential plant micro-nutrients.  These trace elements are often “tied up” = unavailable in parent soils but highly soluble in earthworm casts.  Plants fertilized with earthworm casts rarely require additional nutrients.  This is why earthworm casts have been the standard natural greenhouse fertilizer since the 17th century.

Would You Like To Know More?     Contact the Author directly if you have any questions or need additional information about managing agricultural earthworm populations.

Please visit:     http://www.worldagriculturesolutions.com  — or —  send your questions to:  Eric Koperek, Editor, World Agriculture Solutions, 413 Cedar Drive, Moon Township, Pennsylvania, 15108 United States of America  — or —  send an e-mail to:  Eric Koperek = worldagriculturesolutions@gmail.com

About The Author:     Mr. Koperek is a plant breeder who farms in Pennsylvania during summer and Florida over winter.  (Growing 2 generations yearly speeds development of new crop varieties).

 

 

 

 

 

 

 

ORGANIC HERBICIDES

What works, what doesn’t, and what to do if you can’t spray.

The guy who invents a safe alternative to Roundup will earn millions!  Right now, there is a distressing lack of alternatives to glyphosate = Roundup.  Below is a short summation of available organic vegicides and alternative weed controls.  Choose the best formula or method for your farm.  Experiment until you obtain the degree of weed control desired.

HERBICIDE SCIENCE:     All organic herbicides work by desiccation = leaves dry out = plant death is caused by water loss.  Thus, organic herbicides perform reasonably well on ANNUAL broadleaf weeds and grasses, especially young plants less than 30 days old or 6 inches high.  Desiccant kill rates on young annuals or perennials normally range from  80% to 100%.  Mature perennial weeds (with long tap roots) and perennial grasses (with growing points below soil surface) are rarely killed by desiccant herbicides because these are contact chemicals only — the herbicide is NOT translocated to roots or other underground parts of the plant.  Spraying a desiccant herbicide will knock back perennial weeds (by burning down exposed foliage) but will not kill established plants.  Repeated applications are necessary to control perennial weeds; this is rarely economic so herbicide use must be integrated with other cultural practices to obtain desired level of weed control.  This often means rethinking how to grow and harvest crops.

COMMON LYE:     The cheapest burn-down herbicide is old fashioned lye; either sodium hydroxide (NaOH) or potassium hydroxide (KOH) works equally well.  Powdered sodium lye (for example, Red Devil Lye) is a special order industrial chemical that requires a signed application statement (because sodium lye is used to make illegal drugs).  You can make your own potassium lye at home simply by leaching wood ashes with water.  If a fresh egg floats in the solution, the lye is strong enough to kill plants (or make soap).

Potassium Lye Formula by Weight:     Prepare a 45% to 50% concentration by weight of water = 0.45 to 0.50 expressed as a decimal.  Note:  1 U.S. gallon of water weighs 8.34 pounds = 3.78 kilograms.  0.45 x 8.34 pounds per gallon of water = 3.753 = 3 3/4 pounds of wood ashes per gallon.  Sift wood ash through window screening before weighing.  Mix ash and water the night before use then strain most carefully before application.

Potassium Lye Formula by Volume:     Combine 2 parts finely sifted wood ashes with 3 parts water by volume.  Mix ashes and water then let stand overnight before use.  Decant and filter wood ash lye through paper coffee filters to avoid clogging lines and spray nozzles with grit.

All herbicides are more effective if a spreading-sticking agent is mixed with the solution.  To increase weed kill rates, combine lye with 2% commercial surfactant (surface active agent) by weight or volume.  The admix helps lye solution cover and grip foliage.  If commercial surfactant is not available, substitute an equal portion of common liquid dishwashing detergent.  Addition of 2% “Polysorbate-20” (a powerful emulsifier)  makes herbicide mixtures even more deadly by stripping away protective wax coatings on plant cell walls.

>>>  Concentrated lye solution can have a pH near 14 = it’s extremely caustic = highly basic = will change soil pH if used continuously or in high volumes.  Lye herbicide is NOT recommended for use around acid-loving plants like potatoes, raspberries, cranberries, blueberries, strawberries, azaleas, laurels, rhododendrons, pine trees or other conifers (plants with needle or scale-like leaves that bear seeds in cones).  Check soil pH regularly; it may not be necessary to apply agricultural lime to fields where lye herbicide is used frequently.

>>>  Where agricultural lime is too costly, spraying sodium or potassium lye solution is a cheap way to adjust soil pH.  For example:  To bring highly acid soils into production, spray lye then plant beans.

>>>  Substitute wood ashes where agricultural limestone is unavailable or expensive.  Swap 2 parts wood ashes by weight or volume for every part of powdered limestone.  Sift wood ash through window screening before use.  Crush charcoal screenings to pass 1/4 inch hardware cloth sieve then compost with an equal or greater volume of fresh manure before applying to garden or field.

MALEIC HYDRAZIDE is a chemical growth regulator commonly used to keep potatoes from sprouting in storage, and tobacco plants from suckering.  Maleic hydrazide is NOT an herbicide in the conventional sense of the word (although it does kill plants if used in high concentration).  Use maleic hydrazide to SLOW weed growth; sprayed weeds are stunted rather than killed.  Weeds are knocked back just enough to give crop plants a competitive advantage.  Translation:  If weeds are dwarfed then there is no need to kill them.

Never use the word “herbicide” when talking or writing to the Government about maleic hydrazide.  The official viewpoint is that maleic hydrazide is a plant growth regulator, NOT an herbicide.  Use the word “herbicide” and you may end up having to submit a ton of regulatory paperwork!

Maleic Hydrazide Formula by Volume:     Commercial maleic hydrazide is sold as a 30.3% concentrated solution by volume containing 2.25 pounds of chemical in 1 gallon of water (26.97841% concentration by weight).  Apply 1 to 1.33 gallons of chemical solution in 30 gallons of water per acre to control sprouting in potatoes.  This manufacturer recommended concentration gives you a place to start.  [2.25 pounds chemical per gallon of commercial concentrate / 220.2 pounds of water (30 gallons) in spray tank] x 100 = 0.89928% concentration by weight.  Adjust vegicide concentration until desired level of weed control is obtained.

Maleic Hydrazide Formula by Weight:     To stunt both annual and perennial broadleaf weeds and grasses, apply 0.6% pure maleic hydrazide by weight = six tenths of one percent = 0.6 / 100 = 0.006 expressed as a decimal.  For example:  0.006 x 1,000 grams per liter of water = 6 grams of maleic hydrazide per liter or approximately 0.21 scale ounce per quart of water (6 grams / 28.35 grams per ounce = 0.2116402 scale ounce = 0.21 scale ounce or about 1/5th scale ounce of maleic hydrazide per quart of water).  This concentration will control (don’t say kill)  even multiflora rose and other invasive shrubs and trees.  Maleic hydrazide is fast becoming a favorite weed control chemical because it is safe to handle, cheap, and effective.

AMMONIUM NONANOATE is a synthetic chemical, a detergent-like surfactant that kills weeds by dissolving the wax coating on cell walls.  Damaged cells leak water = weeds die of dehydration.  Think of ammonium nonanoate as a strong soap solution; wear rubber gloves and protective goggles to keep chemical off skin and away from eyes.  Spray herbicide at night to avoid harming most beneficial insects.

Soaps, detergents, and other surface active agents = surfactants kill insects by clogging their breathing tubes.  Soap-sprayed insects die of suffocation.  Thus, it is best to spray ammonium nonanoate and other herbicidal soaps at night to avoid killing as many beneficial insects as possible.

Ammonium Nonanoate Formula by Weight:     Ammonium nonanoate is sold as a 40% concentrated solution by weight.  Mix not more than 6% by weight of commercial concentrated solution in 1 gallon of water = 2.4% by weight of ammonium nonanoate in 1 gallon of water.  1 U.S. gallon of water weighs 8.34 pounds = 3.78 kilograms.  6% = 6 / 100 = 0.06 expressed as a decimal.  0.06 herbicide concentrate x 8.34 pounds per gallon of water = 0.5004 pounds of herbicide concentrate x 16 ounces per pound = 8.0064 = 8 scale ounces of commercial concentrate in 1 gallon of water.  (This is approximately equal to 8 fluid ounces or 1 cup of ammonium nonanoate concentrate in 1 gallon of water).

Note:  This chemical is not currently approved for use on organic farms in the United States.  Ammonium nonanoate is a type of industrial strength soap.

SODIUM LAURYL SULFATE (SLS) is a synthetic detergent commonly found in shampoo, toothpaste, and household cleaning products.  Sodium lauryl sulfate is a contact herbicide that works by stripping the wax coating from cell walls = leaves lose water then plants die of dehydration.  As with any strong soap, wear rubber gloves (to prevent skin from drying out) and safety goggles (to keep detergent out of eyes).

Sodium Lauryl Sulfate Formula by Weight:     Mix 5% to 20% dry chemical by weight in pure water.  1 U.S. gallon of water weighs 8.34 pounds = 3.78 kilograms.  5% = 5 / 100 = 0.05 expressed as a decimal.  0.05 chemical concentration x 8.34 pounds per gallon of water = 0.417 pounds of SLS x 16 ounces per pound = 6.672 = 6 2/3 scale ounces of sodium lauryl sulfate per gallon of water (minimum concentration).  20% = 20 / 100 = 0.20 expressed as a decimal.  0.20 chemical concentration x 8.34 pounds per gallon of water = 1.668 pounds of SLS x 16 ounces per pound = 26.688 scale ounces = 1 pound 10 2/3 scale ounces of sodium lauryl sulfate per gallon of water (maximum concentration).

Sodium Lauryl Sulfate Formula by Volume:     For commercial concentrated solutions, mix 20% concentrate by volume with water.  1 U.S. gallon = 128 fluid ounces = 4 quarts = 8 pints = 16 cups = 256 Tablespoons = 768 teaspoons.  20% = 20 / 100 = 0.20 expressed as a decimal.  0.20 SLS concentrate x 768 teaspoons = 153.6 teaspoons = 51.2 Tablespoons = 3.2 cups = 1 1/2 pints + 3 Tablespoons + 2/3 teaspoon = about 3 1/4 cups herbicide concentrate in 1 gallon of water.  Another way to figure this is:  128 fluid ounces per gallon x 0.20 herbicide concentration = 25.6 fluid ounces of herbicide concentrate needed  / 8 fluid ounces per cup = 3.2 cups = about 3 1/4 cups of SLS concentrate per gallon of water.

SLS Application Rate per Acre:     Apply 2.5 gallons to 7.5 gallons of diluted herbicide per thousand square feet of farm or garden = 109 gallons to 327 gallons per acre.  Note:  Herbicidal soaps are much more effective when powerful emulsifiers and surfactants are added to the mix.

>>>  There are many different kinds of herbicidal soap.  All work the same way and should be diluted to the same concentration:  5% to 20% dry chemical by water weight, or 20% liquid concentrate by volume.  Adjust concentration and application rate as needed to kill target species.  Weeds with hairy or waxy leaves are harder to kill than less protected plants.

D-LIMONENE:     Citrus rinds contain volatile essential oils (orange oil, lemon oil, grapefruit oil, et cetera).  The largest chemical component of all citrus oils is d-limonene, a fragrant chemical and powerful surface active agent = surfactant that quickly dissolves fats, oils, and waxes.  D-limonene is a common ingredient in most natural home cleaning products.  D-limonene is also used to wash greasy automobile parts and as a safe replacement for mineral spirits (petroleum turpentine).  Use d-limonene just like any other strong detergent (ammonium nonanoate or sodium lauryl sulfate, for example).  All herbicidal soaps work by dissolving the waxy coating on plant cell walls.  Damaged leaf cells leak water then plants die of dehydration.

Pure D-Limonene Formula:     Mix 55% d-limonene by weight in water.  Mix 50% orange oil (or other citrus oil), clove oil, cinnamon oil, or lemongrass oil by weight in water.  Essential oil concentration can be decreased to 30% by weight if Polysorbate-20 (emulsifier) and spreading / sticking agent (surfactant) are added to the herbicide solution.

D-Limonene Formula with Emulsifier & Surfactant:     Combine 30% limonene + 10% emulsifier (Polysorbate-20) + 10% commercial surfactant (wetting agent) + 50% pure water = 100% total by weight or volume.  Use baking soda to adjust solution pH to 5 or above.  Apply up to 100 gallons (approximately 400 liters) of diluted herbicide per acre (about 0.40 hectare).

D-limonene can also be used in small quantities as a surfactant (spreading / sticking agent) in other herbicide or insecticide formulations.  Add one-eighth percent to one-quarter percent = 0.125% to 0.25% = 0.00125 to 0.0025 expressed as a decimal = 1 to 2 pints per 100 gallons or approximately 2.5 milliliters per liter of water.

D-limonene makes an economic herbicide provided you live near an orange juice processing plant.  Prices rise as distance from citrus groves increases.

ACETIC ACID = VINEGAR:     For commercial farms concentrated vinegar = 10% to 20% acetic acid is required.  For household gardens, common white table vinegar (5% acetic acid) will suffice.  Strong acids (concentrated vinegar) and strong bases (sodium or potassium lye) both kill weeds by rupturing cell walls = leaves leak water till plants die of thirst.

Vinegar Herbicide Formula by Weight for Farming:     Combine 20% acetic acid (liquid) + 5% citric acid (powder) + 2% commercial surfactant (spreading / sticking agent) + 73% pure water = 100 total parts by weight.  Note:  To save freight costs, order glacial acetic acid = pure, undiluted acetic acid in 1 gallon glass bottles.  Mix 1 gallon of glacial acetic acid with 9 gallons of water to make 10 gallons of concentrated vinegar (10% acetic acid) solution.  Mix 1 gallon of glacial acetic acid with 4 gallons of water to make 5 gallons of concentrated vinegar (20% acetic acid) solution.

Vinegar Herbicide Formula by Volume for Gardening:     Combine 5 cups of common white vinegar (5% acetic acid) + 1 cup of bottled lemon juice (3% to 8% citric acid) + 4 Tablespoons of dish washing detergent (to help herbicide stick to leaves) = 6 1/4 total cups by volume.

Generic Citrus Oil & Vinegar Herbicide:     1 quart orange oil + 4 gallons 12% vinegar (acetic acid) + 2.75 gallons pure water = 7 gallons per acre.  Note:  Any kind of citrus oil, d-limonene, cinnamon or other essential oil will work in this formula.

For best results, spray on a warm, sunny day when weed leaves are dry.  Apply herbicide solution generously so that leaves are thoroughly wet.

Caution!  Concentrated vinegar is a hazardous chemical, a strong acid that will burn skin and eyes.  Wear rubber gloves and safety goggles.  Do not breathe concentrated vinegar vapors.  Work outdoors with the wind at your back = blowing away from you.  Wash skin or eyes with pure, distilled water if necessary.

CHELATED IRON:     FeHEDTA (Iron-Hydroxy-Ethylene-Diamine-Triacetic-Acid) in high concentrations (26.5% by weight) will kill broadleaf weeds in turf grasses.  This herbicide works well but is most costly = far too expensive for agricultural use.

SUNFLOWER SEED HULLS:     Some plants produce natural herbicides.  Sunflower seed shells can be used as mulch to retard weed growth.  Apply 1 to 2 inches of sunflower seed hulls around ornamental or edible plants.  Note:  Herbicidal effect may inhibit growth of flowers and crops!  Perform small plot trials before spreading large amounts of sunflower hulls.

BLACK WALNUT HULLS & WOOD CHIPS:     Black walnuts produce natural herbicides that kill some plants but not others.  For example:  Tomatoes are severely stunted or killed by walnut herbicide.  Test ornamental or crop plants first before spreading mulch of black walnut hulls or black walnut wood chips.

SMOTHER CROPS:     Plants that grow faster than weeds and cast dense shade make ideal smother crops.  Multiple smother crops (planted in sequence) are often used to clear especially weedy fields or to eradicate hard-to-kill perennial weeds with deep tap roots.  For best results, do not plow fields after growing smother crops; tillage stimulates weed germination.  Broadcast small grains or turnips over standing vegetation then immediately mow or roll to cover and protect crop seed.   Alternatively, mow or roll smother crop then set seeds or transplants through surface mulch using no-till equipment.  If smother crop is tilled into the ground (as a green manure) immediately broadcast clover or other legume seed to blanket field as a living mulch.  Fields must be covered with useful plants at all times or weeds will regain foothold.  Popular smother crops include Buckwheat (Fagopyrum esculentum) and Sudangrass (Sorghum sudanense)  in temperate climates, and Sunn Hemp (Crotalaria juncea) in tropical and semi-tropical zones.

Buckwheat Smother Crop:     Fagopyrum esculentum grows 0.75 to 1.25 inches per day reaching a mature height of 50 inches (3 tons of dry matter per acre) in 6 to 8 weeks.  Blooming starts around 32 days and seeds mature in 10 to 12 weeks.  Mow, crimp, or rototill buckwheat when plants are in full bloom, about 60 days after planting.  Do not let plants mature and drop seeds or buckwheat will become a weed in the following crop.  Seed 32 to 40 pounds per acre for small seeded varieties; 50 to 72 pounds per acre for large seeded varieties.  Ideal plant population is 700,000 plants per acre = 16 seeds per square foot.  Test weights vary from 44 pounds (large seeds) to 52 pounds (small seeds) per bushel.  Approximate seed weight varies from 29 to 37 grams (1.02 to 1.30 scale ounces) per 1,000 seeds = 12,200 (large seeds) to 15,600 (small seeds) per pound.

Sudangrass Smother Crop:      Sorghum sudanense grows fast and produces natural herbicides.  Translation:  Weeds are overwhelmed.  Sudan grass grows 1/2 to 2 inches daily if soil is warm and moist.  For best results sow when soil temperatures reach 65 degrees Fahrenheit ~ 18 degrees Centigrade and irrigate with 1 to 2 inches of water weekly.  Broadcast 30 to 50 pounds, drill 35 pounds, or precision seed 13.5 pounds of pure, live seed per acre.  Average seed weight ~ 42,300 seeds per pound.  Plant seeds 1/2 to 1 1/2 inches deep in rows 7 to 14 inches apart.  Under ideal conditions Sudan grass can reach 8 to 9 feet mature height in 8 to 10 weeks.  If temperature and moisture are unfavorable, Sudan grass may take 80 to 100 days to mature.  If desired, Sudan grass may be mowed about 55 days after seeding when plants are 20 to 30 inches tall.  Leave 8 inches of stubble to help grass regrow quickly.  In temperate climates Sudan grass may be cut 2 or 3 times yearly.  6 to 8 cuttings are possible in tropical and sub-tropical areas if soil is fertile and water plentiful.  For each cutting expect 2 to 3 tons of green mulch per acre at 70% to 75% moisture content.  Expect 10 to 12 tons of green chop per acre each year under average conditions.  Under ideal conditions annual production may reach 16 to 24 tons (fresh weight) ~ 4,000 to 6,000 pounds dry weight per acre.

Sudan grass has an enormous fibrous root system that can penetrate 6 to 8 feet into the subsoil.  This huge mass of organic matter restores life and productivity to “tired soils” and “sick fields”.  Sudan grass is one of the best cover crops for weed control and soil improvement.

Sunn Hemp Smother Crop:     Crotalaria juncea is a fast growing nitrogen fixing legume.  In temperate regions with 90 or more days of warm weather, Sunn Hemp grows 1 to 1 1/4 inches per day, reaching 6 feet high and flowering approximately 60 to 70 days from seeding.  In tropical climates some varieties of Sunn Hemp grow over 20 feet tall.  Broadcast 20 to 50 pounds or drill 15 to 40 pounds of pure, live seed per acre in 6 to 36 inch rows.  For precision seeders, use a 60-cell small sugar beet plate and plant 9 pounds per acre in 15 inch rows, or 5 pounds per acre in 30 inch rows.  (Remember to inoculate seed with nitrogen fixing cowpea rhizobia).  Sow seeds 1/2 to 1 inch deep.  Average seed weight = 18,000 to 35,000 seeds per kilogram ~ 15,000 to 33,000 seeds per pound.  Average test weight = 60 pounds per bushel.  Sunn Hemp is amazingly productive when planted in moist, fertile soils.  Expect 8 to 18 tons of green mulch (4 to 9 tons dry weight) per acre at 50% moisture content 10 to 12 weeks after seeding.  Under average conditions Sunn Hemp yields 6.25 to 7 tons of green chop in 60 days = weeds are buried under a great mass of stems and leaves.

There are many aggressive, rapid-growth plants suitable for smothering weeds.  Forage Radish (Raphaus sativus variety longipinnatus) and Forage Maize (Zea mays) are two additional examples.  Choose species and varieties best adapted to local soil and climate.

COMMON CEREAL RYE:     Grain rye (Secale cereale) produces natural herbicides.  The best way to employ this herbicidal effect is to grow a 5 to 6 foot high cover crop of rye and then cut it down with a sickle-bar mower (or use a roller-crimper) when the grass starts to flower or no later than the soft dough stage of seed development.  Leave cut rye straw where it falls.  Set pumpkins or other transplants through the rye mulch.  Alternatively, use a no-till seeder with a fluted coulter to plant through the mulch.  If desired, Dutch white clover (Trifolium repens) can be broadcast over the field the same day crops are transplanted.  Clover seedlings fill any gaps in the mulch providing 90% or better weed control under average field conditions.

You can run a 25-acre vegetable farm with nothing more than a common lawn mower and a hand-cranked cyclone seeder.  Broadcast lawn clover everywhere then transplant into the living mulch.  I can’t think of an easier way to operate a truck farm or market garden.

DUTCH WHITE CLOVER:     Trifolium repens is NOT herbicidal but it does make a good living mulch that can provide effective weed control in transplanted crops and winter grains.  Dutch white clover only grows 6 to 8 inches tall so it makes an ideal living mulch for any crop that grows a foot or more high.  For best results, transplant crops directly into standing Dutch white clover.  If desired, clover can be mowed first to give transplants a little more time to get established.  Sow clover at the same time that you plant winter wheat, barley, oats, and rye.  If convenient, Dutch white clover can be broadcast over established crops when they are young (6 to 8 inches tall) or later in the season (a few weeks before harvest).  Note:  If Dutch clover seed is not available substitute Crimson Clover (Trifolium incarnatum), Sub Clover (Trifolium subterraneum), or a low-growing variety of Medium Red Clover (Trifolium pratense).  A good stand of clover will blot out most competing plants providing 90% or better weed-free fields.

OVERLAPPING ROTATIONS:     Sometimes called “interseeding”, this technique uses the competitive ability of crop plants to suppress weeds.  The idea is to top seed the following crop several weeks before the previous crop is harvested.  This gives crop seeds time to germinate and become established.  When the overstory nurse crop is harvested, the understory crop already has at least 2 weeks head start over competing plants.  In nature, possession is 9 tenths of the law; the first population established will predominate.  By overlapping rotations, weeds never get a toehold.

Successful weed control requires careful timing, zero tillage, pelleted seed, and Dutch white clover (Trifolium repens) living mulch.  Always overseed at least 2 weeks before harvest so seeds have time to germinate ahead of any weeds.  Never disturb the soil for any reason; any tillage will encourage weed growth.  Always use pelleted seed; coated seeds have better germination and seedling survival.  Always use Dutch white clover to check weed growth; clover replaces herbicides and mechanical cultivation.  One last important detail:  Return all crop residues to the field and scatter randomly to form a thin, open mulch; a light blanket of straw or leaves is necessary to protect seedlings and feed the soil.

Rice-Winter Grain & Clover Rotation:     This is the basis of Masanobu Fukuoka’s “Do Nothing Farming” system.  [See:  The One-Straw Revolution, Rodale Press, 1978].  (1)  In fall, sow pelleted winter barley or winter rye seed with Dutch white clover.  (2)  A few weeks before winter grain harvest, broadcast pelleted rice seed over standing winter cereal.  (3)  Immediately after harvesting winter grain, scatter straw randomly over field to protect germinating rice seedlings.  (4)  A few weeks before rice harvest, top seed pelleted clover and winter rye or winter barley over standing rice.  (5)  Immediately after rice harvest, scatter rice straw randomly across field to protect germinating winter grain seedlings.  (6)  Repeat rotation indefinitely; the system works with any kind of summer and winter grain.  Choose crops to fit growing season length.  Note:  Continuous cereal rotations with understory clover companion crops place severe competitive pressures on native weed species.  Provided ground is not tilled, fields remain 95% weed free without herbicides or any other weed control methods.

Hogs make great rototillers provided they do not have rings in their snouts.  Ringed hogs cannot root.

Clover-Wheat-Turnips Rotation:     15th century Dutch farmers combined free-range pig ranching with no-till agronomy to make a low-cost sustainable agriculture system called the Clover-Wheat-Turnips Rotation:  (1)  Enclose a field of Dutch white clover.  (2)  Turn pigs loose in fenced pasture.  Pigs will uproot clover eliminating need for plowing and harrowing.  (3)  Broadcast wheat seed onto pig tilled earth.  (4)  Drive sheep back and forth across field; sheep will stomp wheat seeds into ground.  (5)  When wheat starts to head out, overseed grain with turnips.  (6)  A few weeks before turnip harvest broadcast clover seed over field.  Clover protects and fertilizes soil until cycle repeats in spring.  This rotation reliably yields 40 bushels of wheat (2,400 pounds) per acre = 2,694 kilograms per hectare under European weather conditions without irrigation, diesel fuel, synthetic fertilizer, herbicides, insecticides, or fungicides.

Overlapping crop rotations are remarkably stable — farmers have been using legume-grain-root crop rotations for 700 years.  Many other rotations are possible, with or without livestock or machinery.  Choose cash crops most suited to your local soil and climate.  Use cover crops or forage crops to fill any gaps in the planting season.  Soil must be covered with growing plants at all times = 365 days yearly.  As long as continuous vegetation is maintained fields will remain 95% weed free and crop yields sustained indefinitely.

MULCH-IN-PLACE:     It is impractical to mulch large fields by hand because the volumes required are too large.  The solution is to grow a mulch crop then kill it by mowing or crimping.  Seeds or transplants are then set through the surface mulch using no-till equipment specifically designed to work in high-residue “trashy” fields.  Alternatively, harvest the mulch crop with a silage chopper then apply with a mulch spreader; this technique is ideal for orchards, vineyards, nurseries, and berry plantations where labor costs are high.

The best mulch crops are quick growing grasses that yield high-tonnages per acre.  Grasses are preferred because straw decomposes slowly and forms a nearly impenetrable mat that blocks light and prevents weed emergence.  Fields need at least 4 to 5 tons = 8,000 to 10,000 pounds of straw mulch to obtain 90% weed control.  A 5 to 6 foot stand of grain rye (Secale cereale) produces 4 to 5 tons of long straw which forms a thick, weed-blocking blanket over the soil.  Forage maize (Zea mays) is even better:  It grows 12 to 15 feet high and produces 18 tons = 36,000 pounds of mulch in only 70 days from seeding to harvest.  100 to 120 day forage maize yields up to 30 tons = 60,000 pounds of mulch per acre.  30 tons of corn stalks per acre will obliterate any weed problem for 2 seasons or longer.  Top seed maize mulch with a low growing clover and fields will remain at least 95% weed free.

ZERO INPUT AGRICULTURE:     There are many terms for this technique (No-Kill Cropping, Natural Farming, Do Nothing Agriculture, Zero Budget Natural Agriculture, Minimum Effort Agronomy, Minimal Energy Agriculture, Zero Petroleum Agriculture, et alia).  The idea is to plant seeds into standing vegetation without tillage, herbicides, fertilizers, irrigation, or any other input.  Crops (usually small grains like wheat, oats, barley, and rye) can be sown directly into pastures, hay fields, range lands, or shortly before a crop is harvested (or immediately after a crop is harvested).  The keys to success are timing and seeding method.  The best time to plant is when grains would naturally reseed themselves (usually in the dry or dormant season).  The best way to plant is to disturb the soil as little as possible.  (The more soil is tilled = broken, the more weeds will germinate).  The best methods are to broadcast seed into standing vegetation (pelleted seeds greatly increase seedling survival) or to plant in shallow slits made by a no-till seeder.  Other than planting and harvest, no attention is paid to the crop.  In years with good rainfall, yields are typically 60% to 70% of conventionally grown crops.  In dry years crops are often not worth harvesting for grain (but do produce substantial quantities of forage or surface mulch to protect fields and increase soil organic matter).

Zero input agriculture is the best way to grow small grains where the climate is dry or soils are poor.  The method yields a surprisingly high return on investment because there is little financial risk (only the cost of seeding in a bad year, or the costs of seeding and harvest in a good year).  Because input costs are minimal, profit margins are high.  Thus, zero input agriculture can produce more income than conventional grain farming.

“No-Kill Cropping” is the wave of the future, a convergence of old-school mechanical agronomy with new-school biological agriculture.  The synthesis of these disciplines creates a new way of thinking about farming, an agro-ecological approach where problems are solved by nature rather than by petrochemicals.  Here, the idea is to grow crops and weeds together in mutual symbiosis, rather than spending vast sums to eradicate all competing plant life.

The first time I proposed planting weeds as cover crops, half my audience walked out of the conference room (I think they all worked for Monsanto).

WEEDS AS COVER CROPS:     Weeds make excellent ground covers well worth the cost of seed, fertilizer and irrigation.  Most fields already have sufficient weed populations.  Where land is barren or scraped down to subsoil, broadcast grain elevator screenings liberally.  Elevator screenings are cheap (often free) and contain many weed seeds.

As I write this paper (Monday 1 June 2015) it is almost time to transplant tomatoes in Butler County, Pennsylvania (40.8607 degrees North Latitude, 79.8947 degrees West Longitude).  My fields are a green sea of weeds.  Pigweed (Amaranthus blitum), Lambs Quarters (Chenopodium album), and Common Thistle (Cirsium vulgare) are already 2 to 3 feet high, a respectable nurse crop measuring about 2.5 tons of dry matter per acre.

After lunch I will mow or roll strips through the weeds, overseed each planting strip with Dutch White Clover (Trifolium repens), set 8-inch tall determinate tomato transplants every 4 feet, then run drip irrigation hose down the rows.  Most of the field remains covered by weeds which I leave undisturbed.  I will walk the field once or twice before harvest to rescue the odd tomato plant that gets too crowded by weeds.  A pair of pruning shears quickly dispatches offending vegetation.  The crop gets no other attention until destructive harvest which yields 8 pounds of Number 1 marketable fruit per plant at $0.60 per pound wholesale price for “spray-less tomatoes” (21,000 pounds = 10.5 tons per acre = $12,600 gross income per acre).  That is good money for very little labor and minimal investment (no plowing, staking, fertilizer, herbicides, pesticides, or fungicides).

Lawnmower Farming:     Find the weediest field possible = vigorous growth 5 to 6 feet tall.  Mow widely spaced strips through the weeds.  If possible, run irrigation tape down the rows.  Set transplants then mulch 12 inches deep with cut weeds — this is a form of cold composting known as sheet composting.  Green weeds contain twice the nutrients of fresh dairy cow manure.  Chopped vegetation rots quickly releasing nutrients to feed crops.  Leave remaining weeds standing to provide food and shelter for beneficial insects.  Lawnmower farming does not use land efficiently but it does grow crops cheaply = without tillage, herbicides, fertilizer, or pesticides.

Mow-And-Blow:     On large farms and plantations forage choppers replace common lawnmowers.  Modify delivery chute to deposit chopped vegetation into convenient windrows.  Set transplants and drip irrigation hose down the windrows.  Use mow-and-blow with any kind of vegetation:  Weeds, forage grasses, mulch crops, and mixed species cover crops all do well.  For best results choose plants that produce large yields of biomass = stems and leaves per acre.  If possible, irrigate and fertilize fields to increase mulch yields.

It pays to feed and water weeds.  Weeds use and recycle nutrients efficiently so a little fertilizer creates rampant growth = more biomass for mulch and soil improvement.  For best results apply dilute fertilizer in irrigation water.

>>>     The trick to using weeds as cover crops is to manage them just like any other conventional mulch crop or green manure.  Kill the weed crop by mowing, crimping, or spraying then seed or transplant through the mulch with no-till equipment.  Think of weeds as a mixed cover crop that costs nothing to seed!

>>>     Set aside an acre or two and experiment growing crops in weeds.  The first thing you will discover is that pests do not like weedy fields.  Crops grown in weeds rarely need sprayed.  Fertilizer costs can also be reduced or eliminated because weeds efficiently capture and recycle nutrients.  Water costs also decrease because weeds protect crops from drying winds.

>>>     The only disadvantage to farming weeds is that your neighbors will think you are crazy.  Count your profits and let the naysayers believe as they wish.

Martian Thinking:  “See what the Earthlings are doing, turn 180 degrees in the opposite direction, then work back to what makes sense”.

MARTIAN AGRICULTURE = WEEDS ARE PROFITABLE!     99% of farmers think that weeds are bad.  Eric thinks differently.  I encourage weeds to grow in my fields.  For example:  Why use herbicides in a small grain crop?  Herbicides cost money to apply (and even more money is lost because the crop cannot be sold as “natural” or “organic”).  Modern seed cleaners easily separate weed seeds from crop grains.  Weed seed meal makes ideal organic fertilizer.  (For highest profits sell weed seed meal in 40 pound bags to city gardeners).  Wild oats can be separated from weed seeds and processed into high nutritional value cereal (50% protein rolled oats).  Growing weeds in my grain means that I don’t have to apply insecticides (so I save even more money).  Weeds provide pollen and nectar for bees and other beneficial insects.  Weeds also support primary and alternate hosts for predatory and parasitical insects.  (You need to maintain small populations of “bad” bugs in order to sustain healthy populations of “good” bugs).  Having lots of weeds around helps balance farm ecology (which saves even more money on pest control in other cash crops).  And don’t forget that weeds have extensive root systems that break up plow pans  (compacted soil layers) and increase soil organic matter.  The way Eric looks at this is:  What I lose in grain yield (to weed competition) I gain in lower input costs and higher-margin specialty products.  Even in bad years, Eric always makes more money than his neighbors.  Why?  Because Eric is not looking to win a blue ribbon for maximum yield at the County Fair.  Eric measures success at the bottom line.  He who has more money in his bank account wins!

RELATED PUBLICATIONS:     Trash Farming, No-Till Hungarian Stock Squash, Planting Maize with Living Mulches, Living Mulches for Weed Control, and Crops Among the Weeds.

WOULD YOU LIKE TO KNOW MORE?     Contact the Author directly if you have any questions or need additional information.

Please visit:     http://www.agriculturesolutions.wordpress.com  — or —  http://www.worldagriculturesolutions.wordpress.com  — or —  send your questions to:  Agriculture Solutions, 413 Cedar Drive, Moon Township, Pennsylvania 15108, United States of America  — or —  send an e-mail to:  Eric Koperek = worldagriculturesolutions@gmail.com

ABOUT THE AUTHOR:     Mr. Koperek is a plant breeder who farms in Pennsylvania during summer and Florida during winter.  (Growing 2 generations each year speeds development of new crop varieties).

PELLETED SEED PRIMER

What Is It?     Pelleted seeds are enclosed in a layer of fine clay to protect them from insects and birds.  Beneficial micro-organisms, fertilizer, and seed protectants can also be included in the clay pellet as needed.  Pelleted seeds are ideal for no-till agriculture where crops are broadcast seeded into standing vegetation.  Pelleted seeds are also easier to drill or sow by hand because each pellet is large enough to space accurately.

How To Do It:     Use 1 part seeds + 7 parts finely powdered clay = 8 total parts by volume.  (12.5% seeds + 87.5% powdered clay = 100% by volume).  Any kind of sticky clay will work or use dry, powdered clay purchased in 50-pound bags from a pottery supplier.

If preparing clay from scratch, remove and save topsoil then dig clay from subsoil layers.  Wash or sift clay through window screening to remove impurities.  Dry clay then grind before use.  Ideal pelleting clay should be pure and dust-like, similar to wheat flour.

Place seeds in mixing barrel of 5 gallon = 20 liters or larger capacity.  Barrel should not have any paddles, beaters, blades, or other protrusions = inside surface must be smooth and free of all obstructions.  Rotate barrel by hand or machine (like a cement mixer).

Slowly, add fine water mist until seeds are barely damp.

Add dry clay alternately with water mist while revolving barrel continuously.

When pellets are twice the diameter of the seeds continue turning the barrel for 3 to 4 minutes only, just until pellets look glossy.

DO NOT OVER-ROTATE BARREL OR SEED PELLETS WILL STICK TOGETHER!

Gently pour seed pellets onto screens to dry in a well-ventilated place.

Store air dried seed pellets in waterproof containers in a dry place until needed.

Biological No-Till Small Grains:     Broadcast seed pellets by hand or use a rotary spreader.  Sow pellets directly into standing vegetation so that soil remains undisturbed.  (Broken soil stimulates weed germination).

Alternatively, drill pellets using a no-till seeder equipped with sharp coulters and chisel tines or cultivator blades to cut narrow slits in the soil.  (The goal is minimal disturbance of soil surface and plant cover).

Wait patiently until rains come and seeds germinate.

Do not use chemical fertilizers, herbicides, pesticides, or fungicides on fields.  Do not weed by hand nor cultivate by machine.  Control weeds by sowing grain with Dutch White Clover (Trifolium repens) if necessary.  Irrigation is optional, but not essential.

2 to 4 weeks before harvest sow pelletized seed of second crop into standing vegetation of first crop.  This is necessary to control weeds.

When grain is threshed, return all straw and chaff to the field and spread randomly so following crop can grow up through the mulch.

Continue rotating grain crops taking special care to over-seed following crop 2 to 4 weeks before harvesting preceding crop.

This technique works best in climates warm enough to grow 2 grain crops yearly:  A winter grain crop and a summer grain crop.  In cooler climates substitute a short season crop like Buckwheat (Fagopyrum esculentum) or Turnips (Brassica rapa subspecies rapa)  for the summer grain crop. 

TO CONTROL WEEDS IT IS ESSENTIAL TO KEEP SOIL COVERED WITH GROWING PLANTS AT ALL TIMES = 365 DAYS YEARLY.  USE CLOVERS OR OTHER COVER CROPS TO FILL UP EVERY DAY OF THE GROWING SEASON.  SOIL SHOULD NEVER BE LEFT BARE, NOT EVEN FOR A SINGLE DAY.

Subsistence Grain Farming:     Drill or broadcast seed into standing hay, pasture, range, stubble, or weeds.  For best results sow when grain naturally drops its seeds (most commonly in the Fall = dry or dormant season).  Use pelleted seed if broadcast sowing on soil surface.  Use naked or pelleted seed if planting by drill.  Wait for rain and hope for the best.  In years with good rainfall, subsistence yields will be 60% to 70% of conventionally planted grain crops.  In dry years the crop may not be worth harvesting for grain (but will make forage for cattle).  Even is no crop is harvested, surface vegetation protects land from erosion while roots improve soil structure and fertility.  Subsistence farming makes economic sense because production costs are minimal (seed + 1 pass across the field).  Low costs mean farmers reduce financial risk and gain higher returns on investment.

Seed Bombing:     Seed bombing is a technique used to re-vegetate degraded lands, or to surreptitiously plant vacant lots or other properties not owned by the cultivator = guerrilla gardening.  Seeds are mixed in a stiff clay paste, hand formed into marble to walnut-sized balls, then air dried and stored until planting.  The clay balls are randomly broadcast = bombed over the landscape (or discretely dropped where soil and micro-climate appear most favorable).  A planting density of 10 balls per square meter or yard is typically used for land reclamation projects.

How To Make Seed Balls:     Seed balls are much larger than pellets.  Typical seed balls are the size of large marbles or ball bearings and contain approximately 1/2 fluid ounce = 1 Tablespoon = 3 teaspoons = 15 milliliters = 15 cubic centimeters of clay.  Very large seed balls can be double this size = 1/4 cup or approximately the volume of a walnut in its shell.  Use the following recipe to make seed balls for land restoration projects:

1 part seeds + 3 parts finely sifted compost + 5 parts clay + 1 to 2 parts water = 9 to 10 total parts by volume.  Compost is necessary to provide symbiotic fungi essential for root growth.   Mix compost with 10% organic seed protectant (powdered chili pepper) if desired.  1 part organic fertilizer (phosphate rock or bone meal) can be substituted for an equal volume of clay powder to help establish seedlings in phosphorous deficient soils.  Other additives might include nitrogen-fixing bacteria or fritted trace elements, as needed.

Combine in order seeds, compost, clay, and water.  Mix gently until paste has uniform consistency like bread dough.  Portion paste with cookie scoops then shape balls by rolling clay between palms of hands.  Place tightly formed (crack free) balls in a single layer on screens to air dry in the sun.  Store bone-dry seed balls in a moisture-free, well ventilated place until ready to plant.

Carefully encase large seeds like maize, sunflower, peas, beans, lentils, pumpkins, squash, gourds, cucumbers, and melons in individual seed balls.  Mix all small seeded crops (including grasses, clovers, weeds, and wildflowers) randomly with the clay paste.

For land restoration projects choose seed mixtures carefully:  Best results are obtained by combining seeds of native plants that normally grow together in the wild.  It is good practice to include a wide range of species:  Cool and warm season plants, annuals and perennials, grasses, wildflowers, broadleaf plants, weeds, clovers and other legumes.  If budgets are tight or seed too expensive, obtain weed seeds from local grain elevators.  Elevator screenings are free or cheap and contain large amounts of weed seed.  Weeds are ideal species for colonizing bare soils.  Weeds heal the earth allowing less hardy species to become established.

Would You Like To Know More?     Please contact the Author directly if you have any questions or need additional information about pelleted seeds for agriculture and land reclamation.

Please visit:  http://www.worldagriculturesolutions.com  — or —  send your questions to:  Agriculture Solutions, 413 Cedar Drive, Moon Township, Pennsylvania, 15108 United Sates of America  — or —  send an e-mail to:  Eric Koperek = worldagriculturesolutions@gmail.com

About The Author:     Mr. Koperek is a plant breeder who farms in Pennsylvania during the summer and in Florida during the winter.  (Growing two generations yearly speeds development of new crop varieties).