Clifton Park System

What Is It?  The Clifton Park System is a type of English Ley Farming where long periods of pasture are rotated with short periods of cereal and row crops. Deep rooted pasture plants rejuvenate the soil so that cash crops can be grown without need for manure or purchased fertilizers. In the Clifton Park System, 4 years of mixed species pasture are rotated with 2 years of turnips and cereals: Pasture + Pasture + Pasture + Pasture + Spring Turnips & Fall Grain + Spring Turnips & Fall Grain = 6 year total rotation cycle. Pasture time may be increased to 6 years if soils are thin or poor. The Clifton System works especially well with no-till agronomy and rotational grazing.

Agronomy Note:  There are 3 basic principles of ley farming: (1) Wide species diversity, (2) Deep rooted plants, and (3) intensive rotational grazing or mob grazing. Zero tillage improves agronomic performance.

How To Do It:  Following is a typical Clifton Park pasture mix. Note the wide biological diversity including 9 grasses + 4 legumes + 4 forbs = 17 total species.

Orchard Grass = Cocksfoot = Dactylus glomerata. 10 pounds per acre.

Meadow Fescue = Festuca pratensis. 5 pounds per acre.

Tall Fescue = Festuca elatior. 4 pounds per acre.

Oat Grass (tall) = Avena elatior. 3 pounds per acre.

Hard Fescue = Festuca trachyphylla. 1 pound per acre.

Rough Stalked Meadow Grass = Poa trivialis. 1/2 pound per acre.

Smooth Stalked Meadow Grass = Poa pratensis. 1 pound per acre.

Oat Grass (golden) = Celtica gigantea. 1/2 pound per acre.

Italian Rye Grass = Lolium italicum. 3 pounds per acre.

Dutch White Clover = Trifolium repens. 2 pounds per acre.

Alsike Clover = Trifolium hybridum. 1 pound per acre.

Red Clover = Trifolium pratense. 2 pounds per acre.

Kidney Vetch = Anthyllis vulneraria. 2 1/2 pounds per acre.

Chicory = Cichorium intybus. 3 pounds per acre.

Burnet = Sanguisorba minor. 8 pounds per acre.

Sheep Parsley = Petroselenium crispum. 1 pound per acre.

Yarrow = Achillea millefolium. 1/2 pound per acre.

TOTAL: 48 pounds Clifton Park Pasture Seed Mixture.

Pasture Management:  Clifton Park was a sheep ranch in England at the turn of the 20th century (1900). Your farm and herd will be different. Do not be afraid to change or add species to the base mixture. For best results, choose a wide variety of deep-rooted perennials. Remember to rotate livestock daily so pastures have time to regrow. Adjust grazing cycles so plants can flower and reseed.

Related Publications:  Biblical Agronomy; Biological Agriculture in Temperate Climates; Crop Rotation Primer; Earthworm Primer; The Edge Effect; Intensive Rotational Grazing Primer; Strip Cropping Primer; The Twelve Apostles (12 species cover crop mix).

Other Articles of Interest:  Building Soils with Multiple Species Cover Crops, Butler, Pennsylvania 1956 – 1996.

Would You Like to Know More?  For more information on ley farming and intensive rotational grazing, please visit: www.worldagriculturesolutions.com – or – Send an e-mail to: worldagriculturesolutions@gmail.com – or – send your questions to: Eric Koperek, Editor, World Agriculture Solutions, 413 Cedar Drive, Moon Township, Pennsylvania 15108 United States of America.

About the Author:  Mr. Koperek is a plant breeder who farms in Pennsylvania during summer and Florida over winter. Growing 2 generations yearly speeds development of new crop varieties.

Index Terms:  Alsike Clover (Trifolium hybridum); Burnet (Sanguisorba minor); Chicory (Cichorium intybus); Clifton Park (ley farming system); Crop Rotation; Dutch White Clover (Trifolium repens); Golden Oat Grass (Celtica gigantea); Hard Fescue (Festuca trachyphylla); Italian Rye Grass (Lolium italicum); Kidney Vetch Anthyllis vulneraria); Ley Farming; Meadow Fescue (Festuca pratensis); Multiple Species Forage Crops; Oat Grass (Avena elatior); Orchard Grass (Dactylus glomerata); Pasture Management; Polycultures; Red Clover (Trifolium pratense); Rough Meadow Grass (Poa trivialis); Sheep Parsley (Petroselenium crispum); Sheep Ranching; Smooth Meadow Grass (Poa pratensis); Tall Fescue (Festuca elatior); Yarrow (Achillea millefolium).

Original Publication Date:  February 1963, Florida, Uruguay.

Update:  October 2023, Evans City, Pennsylvania.

Biological Control of Citrus Greening

Summary: This 23-year experiment looks at how orange trees grow in a multiple-species cover crop of 29 native weeds and 60 companion plants. A small grove of 27 trees is followed from crop year 2000 (before citrus greening) through 2022. (Citrus greening appeared in Florida around 2005). Live tree number dropped from 27 to 24. Average early season fruit Brix dropped from 14.6 to 11.5%. Mean late season Brix declined from 16.0 to 12.9% Average fruits per tree decreased from 200 to 140. Average market fruit weight dropped from 7.33 to 4.5 ounces. Mixed species cover crops are not a cure-all for citrus greening, but they enable orange trees to live with the disease and produce fruit of acceptable quality.

Experimental Location: Venus, Highlands County, Florida, United States of America. Zip Code: 33960. 27.0670 degrees North Latitude. 81.3571 degrees West Longitude.

Climate: Venus has a humid subtropical climate with a distinct monsoon season. The wet months are June through September (31 inches of rain). The dry months are November through January (6 inches of rain). Elevation = 82 feet above sea level. Average Annual Temperature = 72.5 degrees Fahrenheit. The warmest month is July (High = 92 degrees Fahrenheit). The coldest month is January (Low = 48 degrees Fahrenheit). Average Annual Rainfall = 52 inches. Average First Frost (36 degrees Fahrenheit) = 21 December. Average Last Frost in Spring (36 degrees Fahrenheit) = 20 February. Frost Free Growing Season = 317 days = approximately 10 months. Note: Venus is the warmest area in Florida. Frosts are rare and unpredictable.

Experimental Design: A small grove of 27 trees is monitored over 23 years for longevity (age), fruit quality (percent sugar content), and yield (fruit number and weight). Sugar content in degrees Brix is measured with a refractometer by sampling juice of 10 early season and 10 late season fruits from each tree. (1 degree Brix = 1 percent sugar content by weight = 1.5 ounces of sugar in 1 gallon of pure water). 23 years of data ensure reliable averages for comparison with commercial orchards.

Soil Type: Sandy Gravel. South Florida soils are deficient in most primary nutrients and trace elements. The best management practice for these problem soils is to keep fields “green” all year long. Growing plants add organic matter to the soil and live roots feed sugar to beneficial micro-organisms.

Rotation: Experimental orchard was planted in 1970 on pasture seeded with multiple species forages. It is good practice to plant citrus on fresh ground = hay fields or meadows 7 or 8 years old. Long rotations cure “orchard syndrome” = buildup of nematodes and diseases that make trees sick and cut yields by 30 to 50 percent.

Variety: Citrus sinensis cultivated variety “Cyprus”. This is a “vintage” variety imported from the island of Cyprus in 1880. Cyprus oranges are large and sweet, about the size of a grapefruit = 13 to 18 ounces and 14 to 20 degrees Brix. Cyprus oranges grown in Florida are smaller (7 to 14 ounces) and contain less sugar (14 to 16 degrees Brix for late season fruit).

Spacing: Experimental trees are plated 30 feet equidistantly = 48 trees per acre to promote maximum airflow through the orchard and optimum light penetration into the canopy. For comparison, most modern Florida orchards have 70 trees per acre spaced 25 feet apart.

Cultivation: Experimental orchard was not plowed, disked, harrowed, or cultivated. Weeds and cover crops were allowed to grow without interference. Orchard was mowed once yearly just before harvest.

Agronomy Note: Conventional tillage of South Florida soils is a pointless waste of effort. Plowing sandy gravels merely stirs up more rocks. Cultivation destroys the network of beneficial fungi upon which orange trees depend for water and minerals.

Fertilizer: No nitrogen fertilizers (chemical or organic) were used in this experiment. Legumes and independent soil bacteria supplied nitrogen for orange trees. 1 ton each of clay, phosphate rock, and greensand were broadcast yearly over every acre. 500 pounds of fritted trace elements were applied to each acre every 5th year.

Agronomy Notes: Small amounts of clay, about 3/4 ounce per square foot yearly, help sandy soils hold water and nutrients for better plant growth. Only modest amounts of clay are needed to “strengthen” sandy fields, never more than 10 percent by weight in the top 6 inches of soil. Adding excess clay reduces porosity and makes soil too sticky.

Micro-nutrients are mixed with molten soft glass then crushed into coarse sand called “frit”. Minerals are released slowly as the glass dissolves in the soil.

Herbicide: No herbicides were used in this experiment. Weeds and cover crops were allowed to grow with “wild abandon” to encourage maximum populations of beneficial insects. The trees did not seem to mind competition from their companions even when occasional vines climbed into the branches. Errant vines were removed by hand and the orchard mowed immediately before harvest.

Fungicide: No fungicides were used in this trial. Widely spaced trees grown in weeds are remarkably healthy even when infected by citrus greening.

Insecticide: No insecticides (synthetic or natural) have ever been used in this orchard. One of the significant advantages of growing citrus with many companion plants is that trees do not require spraying. Large populations of native predators and parasites keep pests below economic threshold levels.

Irrigation: Experimental trees are irrigated by overhead sprinklers installed when the orchard was planted in 1970. Trees receive 2 inches of water weekly, as needed.

Harvest: Experimental trees were harvested by hand. All attempts to use robots have failed miserably. Machine intelligence and artificial vision systems cannot handle random limbs and branches. No robot has ever picked more than 60% of available fruit even when citrus trees were espaliered and trained on wires. Machine harvest of oranges remains a faint hope far in the future.

60-Species Cover Crop with 48% Legumes:

29 legumes (48.33%) + 15 forbs (25%) + 11 grasses (18.33%) + 5 root crops (8.33%) = 60 total species (99.99%).

We plant a little bit of whatever cover crop seeds are available. Our goal is broad genetic diversity. Wide variety supports the maximum number of beneficial insects and micro-organisms. Admittedly, this is “black box” science. We do not know how the biology works but orange trees somehow manage to survive and ripen good fruit. Cover crops are not a panacea for citrus greening but sowing seeds is far less costly than alternative treatments.

Alfalfa = Lucerne = Medicago sativa

Birdsfoot Trefoil = Lotus corniculatus

Black Medic = Medicago lupulina

Buckwheat = Fagopyrum esculentum

Butterfly Pea = Centrosema rotundifolium

Canary Seed = Phalaris canariensis

Caraway = Carum carvi

Centro = Centrosema pubescens = Centrosema molle

Clitoria = Clitoria ternatea

Cowpea = Vigna unguiculata

Crimson Clover = Trifolium incarnatum

Deer Vetch = Aeschynomene americana

Dill = Anethum graveolens

Dutch White Clover = Trifolium repens

Egyptian Clover = Trifolium alexandrinum

Fenugreek = Trigonella foenum-graecum

Flax Seed = Linum usitatissimum

Forage Kale = Brassica oleracea sabellica

Forage Maize = Zea mays

Forage Pea = Pisum sativum

Forage Sorghum = Sorghum bicolor x Sorghum sudanense

Forage Soybean = Glycine max = Glycine soja

Forage Turnip = Brassica campestris rapa

Frost Bean = Vicia faba minor

Garden Radish = Raphanus sativus

Grain Sorghum = Milo = Sorghum bicolor

Hairy Indigo = Indigofera hirsuta

Jack Bean = Canavalia ensiformis

Lupine (blue) = Lupinus polyphyllus

Mexican Sunflower = Tithonia rotundifolia

Mung Bean = Green Gram = Vigna radiata

Oat = Avena sativa

Okra = Abelmoschus esculentus

Partridge Pea = Cassia rotundifolia = Chamaecrista species

Pearl Millet = Pennisetum glaucum

Phacelia = Phacelia tanacetifolia

Pigeon Pea = Cajanus cajan

Plantain = Plantago major

Rape Seed = Rape Seed = Brassica napus

Red Clover = Trifolium pratense

Red Lentil = Lens culinaris

Rice (African) = Oryza glaberrima

Rice (Indian) = Oryza sativa indica

Rice (Oriental) = Oryza sativa japonica

Rutabaga = Brassica napus napobrassica

Safflower = Carthamus tinctorius

Scarlet Runner Bean = Phaseolus coccineus

Sesame = Sesamum indicum

Sesbania = Sesbania exaltata

Stock Beet = Magelwurzel = Beta vulgaris

Sugar Beet = Beta vulgaris saccharum

Sunflower = Helianthus annuus

Sunn Hemp = Crotalaria juncea

Sweet Clover = Meliotus officinalis

Sweet Sorghum = Sorghum bicolor saccharum

Velvet Bean = Mucuna pruriens

Winter Barley = Hordeum vulgare

Winter Rye = Secale cereale

Winter Vetch = Vicia villosa

Winter Wheat = Triticum aestivum

Agronomy Notes: Cover crop seeds may be mixed with corn meal, weed seed meal, or similar carrier for more even distribution. Use a no-till drill and sow not less than 20 pounds per acre in 2-inch-deep furrows spaced 7 inches apart. Alternatively, mow field first, broadcast seed, then make 1 pass only with a rear-tine rototiller set 2 inches deep. Cover crops may also be surface seeded = Sow-and-Mow: Broadcast seed into standing weeds 5 to 6 feet tall then immediately mow to cover and protect seed. Prompt and frequent irrigation is essential to speed germination of surface sown seeds.

Sesbania exaltata is a useless weed to many South Florida growers. All varieties of sesbania are legumes that fix 130 pounds of nitrogen per acre every 60 days when grown in monocultures. The difference between a “weed” and a useful plant is often careful management.

Common Agricultural Weeds in Highland County:

Following is a list of 28 weed species most common on South Florida farms. These are only the most bothersome weeds. There are many other species in fields around Venus. Subtropical warmth encourages rapid plant growth so weed competition is constant on agricultural fields. The only biologically effective way to manage weeds is to keep ground covered with live crops year-round. Shade and intense competition prevent weeds from becoming established.

American Black Nightshade = Solanum americanum

Annual Ryegrass = Lolium multiflorum

Bristly Starbur = Acanthospermum hispidium

Bull Thistle = Cirsium vulgare

Cocklebur = Xanthium strumarium

Coffee Senna = Senna occidentalis

Crabgrass = Digitaria sanguinalis

Fall Panicum = Panicum dichotomiflorum

Florida Beggarweed = Desmodium tortuosum

Goosegrass = Eleusine indica

Hairy Nightshade = Solanum physalifolium

Johnsongrass = Sorghum halepense

Lambsquarters = Chenopodium album

Morning Glory = Ipomoea purpurea

Palmer Amaranth = Amaranthus palmeri

Pigweed = Amaranthus blitum

Purple Nutsedge = Cyperus rotundus

Purselane = Purslane = Portulaca oleracea

Ragweed = Ambrosia artemisifolia

Ragweed Parthenium = Parthenium hysterophorus

Redroot Pigweed = Amaranthus retroflexus

Sandbur = Cenchrus echinatus

Sickle Pod = Senna obtusifolia

Smooth Pigweed = Amaranthus hybridus

Spanish Needle = Bidens alba

Spiny Amaranth = Amaranthus spinosus

Texas Panicum = Urochloa texana

Yellow Nutsedge = Cyperus esculentus

Experimental Measurement: Harvested fruits were weighed on a digital platform scale accurate to 1/100th pound. All numbers are rounded down to the nearest 1/10th pound.

Summary of Experimental Results:

Effect of Citrus Tree Greening on Orange Tree Growth

Trees spaced 30 x 30 feet apart, planted in 1970. Cyperus Orange grafted on Trifoliate Orange rootstock. Irrigated orchard covered with native weeds and 60-species companion plant mix mowed only before harvest. 1 ton each of clay, phosphate rock, and greensand broadcast per acre yearly. 500 pounds per acre of fritted trace elements applied every 5 years.

Harvest Year 2000

Tree Number = 27

Early Season Fruit Brix = 14.1%

Late Season Fruity Brix = 16.0%

Fruits per Tree = 200

Market Fruit Weight = 7.3 oz

Yield per Tree = 91.2 lb

Note: Degrees Brix is a measure of “soluble solids” = sugar content. 1 degree Brix = 1 percent sugar.

Harvest Year 2022

Tree Number = 24

Early Season Fruit Brix = 11.5%

Late Season Fruit Brix = 12.9%

Fruits per Tree = 140

Market Fruit Weight = 4.5 oz

Yield per Tree = 39.3 lb

Commentary: 39 pounds of fruit per tree is nothing to cheer about unless the alternative is bulldozing an entire orchard. Growing orange trees in “weeds” has 3 distinct advantages:

(1) Companion plants help rejuvenate trees so they have productive lives exceeding 50 years. Most trees infected with citrus greening live only 15 years or less.

(2) Multiple species cover crops enable orange trees to ripen fruits with high sugar contents, 11.5 to 12.9 degrees Brix. These values compare favorably with oranges from California where citrus greening has not yet spread.

(3) Trees grown in weeds do not have economically significant insect problems. Experimental trees remain unsprayed after 54 years. Companion plants provide food, shelter, and alternate hosts for beneficial predators and parasites. The good bugs eat the bad bugs.

Little is known about the interaction between species in a cover crop mix. Even less is known about the interrelationships between myriad species of soil micro-organism and plant roots. What is known is that a lively trade exists between plants and symbiotic fungi. Roots provide sugar to fungi in exchange for water and minerals. Perhaps complex organic compounds are traded as well. Fungi make anti-biotics to protect themselves from bacteria. Citrus greening is a bacterial disease. Could anti-bacterial chemicals be responsible for keeping orange trees healthy?

Related Publications: Biological Agriculture in Temperate Climates; Crops Among the Weeds; Living Mulches for Weed Control; Managing Weeds as Cover Crops; The Twelve Apostles (multi-species cover crop); Trash Farming; Weed Seed Meal Fertilizer.

Would You Like to Know More? For more information on biological agriculture and multi-species cover crops please visit: http://www.worldagriculturesolutions.com — or — mail your questions to: Eric Koperek, Editor, World Agriculture Solutions, 413 Cedar Drive, Moon Township, Pennsylvania 15108 United States of America — or — send an e-mail to: worldagriculturesolutions@gmail.com.

About the Author: Mr. Koperek is a plant breeder who farms in Pennsylvania during summer and Florida over winter. (Growing 2 generations yearly speeds development of new crop varieties).

Index Terms: Biological Agriculture; Biological Insect Control; Candidatus liberibacter asiaticus (citrus greening bacteria); Companion Plants; Citrus Greening (disease); Cyprus Orange (Citrus sinensis cultivated variety Cyprus); Huanglongbing (citrus greening disease); Multiple Species Cover Crops; Orange Fruit Brix; Orchard Floor Management; Sweet Orange (Citrus sinensis); Trifoliate Orange Root Stock (Citrus trifoliata); Weeds (as cover crop).

Publication Date: June 2023, Homestead, Florida.

CROP ROTATION PRIMER

Problem:     Growing the same crop in the same field year after year weakens the soil and promotes harmful insects and diseases.

Solution:     Plant a different crop each year.  Alternating unrelated species allows soil to rest and breaks reproduction cycles of diseases and pests.

Example:     Rather than sowing Wheat — Wheat — Wheat, grow Red Clover — Potatoes — Wheat.

Rotation Science:     Each species roots at different depth and takes varying amounts of minerals.  Rotating crops gives soil time to replenish these nutrients.  Every variety has its own cast of villainous insects and debilitating diseases.  Alternating different plants each season starves harmful organisms by denying them hosts on which to feed.

How To Do It:     Following is a list of strict rotation rules.  Obey these instructions and your crops will thrive.  Ignore the rules and you will spend unpleasant sums for costly pesticides, nematicides, and fungicides.

Rule-Of-Thumb:     Never follow a crop with a similar or botanically related species.  Thus:

Rule:     Never follow a grain crop with a grain crop.  Examples:  Oats & Wheat.  Maize & Barley.  Note:  This rule applies to all true cereals = grass crops.

Rule:     Never follow a leaf crop with a leaf crop.  Examples:  Spinach & Lettuce.  Cabbage & Chard.

Corollary:     Never follow a broad leaf plant with a broad leaf plant if there is a better alternative.  Example:  Sunflower & Collards.  Sunflower & Millet is a better choice (broad leaf plant followed by a narrow leaf = grass plant).  This rule is not always easy to follow but keep it in mind especially if nematodes are a problem.  Grasses suppress most nematodes.

Good Practice:     Rotate nematode resistant crops where these parasites cause economic losses:  Asparagus, Arugula, Barley, Broccoli, Cabbage, Castor Bean, Collards, Cowpea, Crimson Clover, Grasses (Poaceae), Hairy Vetch (winter vetch), Jack Bean, Joint Vetch, Kale, Lupine, Maize (corn), Marigold (Tagetes species), Millet, Mustard Greens, Mustard Seed, Oats, Partridge Pea, Rapeseed (canola), Rice, Rye, Sesame, Showy Crotalaria, Sorghum, Sudan Grass, Sunn Hemp, Velvet Bean, Wheat.

Rule:     Never follow a root crop with a root crop.  Examples:  Carrots & Potatoes.  Onions & Sugar Beets.  Note:  All roots, tubers, corms, and bulbs are called “root crops”.

Rule:     Never follow a fruit crop with a fruit crop.  Examples:  Tomatoes & Peppers.  Watermelons & Gourds.  Cucumbers & Eggplants.

Rule:     Never follow a seed crop with a seed crop.  Examples:  Buckwheat & Sesame.  Caraway & Fennel.  Note:  “Seed Crops” include “pseudo-cereals” (Quinoa & Amaranth) and “Oil Seeds” (Safflower, Flax, Sunflower).

Rule:     Never follow a flower crop with a flower crop.  Examples:  Poppies & Zinnias.  Marigolds & Nasturtiums.

Rule:     Never follow a vine crop with a vine crop.  Examples:  Gourds & Pumpkins.  Cucumbers & Squash.  Note:  Some rotation rules overlap.  This repetition is deliberate.  Gourds, pumpkins, squash, and cucumbers are fruit crops, vine crops, and in the same botanical family = 3 reasons not to follow these crops in close rotation.

Rule:     Never follow crops sharing common diseases or insect pests.  Example:  Tomatoes & Watermelons are both susceptible to anthracnose.

Rule-Of-Thumb:     Highly aromatic plants = herbs “cleanse” the soil.  Examples:  Basil, Oregano, Sage, and Thyme.  This rule dates back to the Middle Ages and is especially useful for market gardens and other small spaces.  If you cannot think of a better rotation follow cash crops with herbs or strongly scented flowers like Marigolds.

Rule:     Alternate legumes with cash crops whenever practical.  Examples:  Red Clover & Sweet Corn.  Crimson Clover & Cabbage.  Frost Beans & Green Peppers.  Why buy costly synthetic fertilizer when you can grow nitrogen-fixing legumes?  Let nature pay your fertilizer bills!

Corollary:     Plant legumes with cash crops whenever practical.  Growing 2 or more species together is called polyculture.  Examples:  Pumpkins & Dutch White Clover.  Barley & Chickling Vetch.  Sweet Corn & Pinto Beans.  Cotton & Crimson Clover.  Potatoes & Frost Beans.  Seed multiple species in the same row, in alternate rows, or broadcast together.  For best results use short or non-climbing legumes that will not interfere with harvesting equipment.

Rule:     Use 7-year rotations whenever practical.  Example:  Flax — Sweet Clover — Wheat — Lentils — Rapeseed (canola) — Pinto Beans — Sunflower.  Long rotations are essential to control insects and disease organisms that live in the soil.

Rule:     Alternate cash crops with forage crops whenever practical.  Examples:  Safflower — Winter Rye & Winter Vetch & Forage Turnips.  Winter Barley & Austrian Winter Peas & Tillage Radish — Sunflower.  Forage Maize & Velvet Bean — fall Broccoli or other cabbage family crops.

Good Practice:     German farmers have a long history of planting “Landsberger Gemenge” = Hill Mixture = Mountain Mixture = Waste Land Mixture = multi-species forage crops sown on land unsuitable for plowing.  Typical mixes include 1 cereal or grass + 2 legumes + 1 cabbage family plant or root crop.  For example:  Winter Rye + Red Clover + Winter Vetch + Forage Kale or Turnips.  This combination of cereal, legume, forb, and root crops makes a balanced diet ideal for grazing animals.  Cattle gain 2.5 to 3.5 pounds daily when feeding on forage mixtures of 4 or 5 species.

Historical Note:     Farmers in the Middle Ages planted “The Twelve Apostles” = a mixed species forage crop with 4 grains + 4 legumes + 4 root or broad leaf crops.

Rule:     Practice sabbatical rotation whenever possible:  Let fields rest every seventh year.  Grow weeds or multiple species cover crops to restore soil structure and fertility.  Example:  Caraway Seed — Red Clover — Sunflower — Berseem Clover — Winter Rye — Soy Beans — Mixed Grass & Alfalfa Hay Crop.

Rule:     Grow crops in narrow strips rather than large fields.  Plant adjacent strips with unrelated species.  Adjust strip widths to fit planting and harvesting machinery.  For best results strips should not exceed 200 feet wide on flat land or 50 feet wide on hills or slopes.  Example:  4 rows of Sweet Corn — 4 rows of Snap Beans — 4 rows of Sunflower — 4 rows of Sweet Potatoes . . . .  Note how tall crops alternate with short crops.  This increases light penetration into the canopy and greatly reduces pest populations.

Rule:     Plant cash crops with companion plants whenever practical.  Use short cover crops that will not compete with taller cash crops.  Example:  Oats & Forage Peas & Turnips.  Harvest oats with a “stripper header” then graze peas & turnips.  Historical Note:  Farmers in the Middle Ages grew polycrops called The Holy Trinity = 1 cereal grain + 1 legume + 1 root crop.

Rule:     Include multiple species cover crops in farm rotations whenever practical.  Use multi-species cover crops just like legume cover crops.  Mixed species cover crops and legumes can be freely substituted in any crop rotation.  Growing multiple species cover crops is the best way to improve soil tilth and increase soil organic matter.

Good Practice:     Experience has shown that mixed species cover crops effectively control pests and diseases.  However, it is best to be cautious.  Thus, a corn and soybean farmer should not include either maize or soy in his cover crops.  This principle applies to all cash and cover crops.

Rule-Of-Thumb:     Mixtures of plants grow better than isolated species.  full synergistic effects require at least 8 cover crop species.  There is a certain minimum number of species that must be present before soil biology reaches maximum activity.  this “tipping point” appears to vary depending on location and plant varieties.  Some farmers include 30 species in their cover crop mixes.

Generic Cover Crop Mixture:     2 warm season grasses + 2 warm season legumes + 2 warm season broad leaf plants + 2 cool season grasses + 2 cool season legumes + 2 cool season broad leaf plants + 2 or more root crops = 14 or more species cover crop mix.  Broadcast not less than 20 pounds per acre or drill in 2-inch deep furrows spaced 7.5 inches apart.

Rule-Of-Thumb:     Include 50% legumes by weight in mixed species cover crops to provide sufficient nitrogen for following cash crop.

Science Note:     Cover crops containing many species can fix substantial amounts of nitrogen even if few or no legumes are present.  Agronomists speculate that this nitrogen comes from free-living soil bacteria.  Also, symbiotic bacteria fix more nitrogen when mixtures of legumes are grown with plants that do not fix nitrogen.  Maximum synergistic effects are noted in cover crops with 20 or more species.  Ideal number of species is not known.

Rule:     Reserve 5% to 10% of farmland for native weeds.  Grow weeds around fields and in narrow strips between cash crops.  Sow weeds in vineyards and orchards.  Mow weeds only when necessary = at harvest.  Example:  Obtain weed seeds = screenings from local grain elevators.  Sow wherever soil is bare.  Bale weedy fields.  Spread bales of “wildflower hay” wherever soils are weak or pests prolific.  Native weeds are essential to provide food, shelter, and alternate hosts for beneficial insects.  Biological pest control is not effective without native wees growing in close proximity to crops needing protection.

Rule:     Tolerate weeds in cash crops provided density does not exceed 2,500 to 5,000 weeds per acre = approximately 1 weed every 3 or 4 feet equidistantly.  Thin weeds as necessary to protect cash crops from excess competition.  Weeds provide food, shelter, and alternate hosts for predatory and parasitical insects.  Example:  Let weeds grow inside and around tomato fields.  Result:  Save $400 per acre on insecticide costs.

Rule:     For biological pest control, plant cash crops adjacent to native weeds and other plants with small flowers.  More weeds = more flowers = fewer pests = less crop damage.  Rule-Of-Thumb:  If you have a pest problem it means you do not have enough flowers.  Examples:  Plant wildflowers in your vineyard or buckwheat, hairy vetch, and turnips in your orchard.

Rule:     Reserve 5% to 10% of farmland for hedgerows, windbreaks, and wood lots.  For high biodiversity plant not less than 40 species per acre or linear mile.  for best results choose economic species that produce nuts, fruits, berries or other cash crops.  Rule-Of-Thumb:  Everything on a farm should produce income.  Example:  Wildflowers can be harvested for seed or rented to local bee keepers.

Rule:     Break any rule rather than do something stupid.  Rotation rules are based on centuries of practical experience.  Thus, think deeply before trying anything risky.  For example:  Crop rotation can be difficult or inconvenient in small spaces or market gardens.  Solution:  Compromise where needed and apply lots of compost = at least 1 inch deep = 1 pound per square foot.  Soils of high biological activity have strong resistance to pests and diseases.  Rule-Of-Thumb:  Plants with Brix readings above 12% dissolved solids are generally immune to most insects and pathogens.  High Brix levels are directly related to soil organic matter content.  Translation:  More compost = healthier plants = crop rotation is not always necessary all of the time.

Plant Families:     Following is a list of the top 10 botanical families most important to farmers and gardeners.  Use listed species to plan effective crop rotations.

Beet Family = “Chenopods” = Chenopodiaceae:     Amaranth, Beet, Lamb’s Quarters, Mangel-Wurzel (stock beet = forage beet), Spinach, Sugar Beet, Swiss Chard, Quinoa, Redroot Pigweed.

Cabbage Family = “Crucifers” = “Brassicas” = Cruciferae = Brassicaceae:     Arugula, Brussels Sprouts, Broccoli, Cabbage, Chinese Cabbage (bok choy), Cauliflower, Collards, Garden Cress, Horseradish, Kale, Kohlrabi, Mustard (greens), Mustard (seed), Nasturtiums, Radish, Rapeseed (canola), Rapini, Rutabaga, Turnip, Water Cress, Woad (blue dye plant).

Agronomy Note:  Brassicas and Chenopods are good pioneer plants because they do not need mycorrhizal fungi in order to thrive.  Caution:  Do not plant Brassicas or Chenopods if you are trying to encourage beneficial fungi.  Brassicas and Chenopods will not feed mycorrhizal fungi.

Carrot Family = Apiaceae = Umbelliferae:     All plants in the Carrot Family have umbels = umbrella-like flowers composed of hundreds of tiny florets.  Small flowers are ideal “bee forage”:  Angelica, Anise, Caraway, Carrot, Celeriac, Celery, Chervil, Cilantro, Coriander, Cumin, Dill, Fennel, Lovage, Parsley, Parsnip, Wild Carrot (Queen Anne’s Lace).

Cucumber Family = “Cucurbits” = Cucurbitaceae:     Cantaloupe (melon), Cucumber, Cushaw (squash), Gourd, Honeydew (melon), Luffa (sponge), Muskmelon, Pumpkin, Squash (summer, winter, & spaghetti), Watermelon, Zucchini.

Daisy Family = Aster Family = Asteraceae = Compositae:     Artichoke, Calendula, Chamomile, Chicory, dandelion, Endive, Escarole, Everlasting (helichrysum), Lettuce, Marigold, Raddichio, Sunflower, Tansy, Tarragon, Wormwood, Yarrow.

Grain Family = Cereal Family = Grass Family = Gramineae = Poaceae:     Barley, Corn (maize), Durum (wheat) = Semolina = Kamut, Einkorn (wheat), Emmer (wheat), Fonio, Millet, Oat, Rice, Rye, Sorghum, Spelt (wheat), Teff, Triticale (rye x wheat hybrid), Wheat, Wild Rice.  Pseudo-Cereals are not grass plants but are grown and eaten like true grains:  Amaranth, buckwheat, Chia, and Quinoa.

Legume Family = Fabaceae = Leguminosae:     Any plant that has seeds in pods is called a legume.  All legumes fix nitrogen and can be grown as “green manure crops”:     Alfalfa (lucerne), Beans, Carob Tree, Chickpeas (garbanzo beans), Clovers, Cowpea, Castor Bean, Fenugreek, Hairy Indigo, honey Locust Tree, Jack Bean, Lentils, Lespedeza, Lupine, Partridge Pea, Peas, showy Crotalaria, Sunn Hemp, Vetches (tares).  Legumes grown for dry, edible seeds are called “pulses” or “pulse crops”.

Mint Family = Lamiaceae = Labiatae:     Basil, Bee Balm, Bergamot, Calamint, Catnip, Hyssop, Lavender, Lemon Balm, Marjoram, Mint, Oregano, Pachouli, Rosemary, Sage, Savory, Thyme.

Onion Family = Lily Family = “Alliums” = Alliaceae = Liliaceae:     Asparagus, Chives, Garlic, Hyacinth, Leeks, Lilies, Onions, Ramps, Scallions, Shallots.

Tomato Family = Solanaceae:     Eggplant, Peppers, Petunias, Potatoes, Tobacco, Tomatoes, Tomatillos.

Related Publications:     Clifton Park System; Biblical Agronomy; The Twelve Apostles; Biological Agriculture in Temperate Climates; Polyculture Primer; Strip Cropping Primer; Worm Farming; Managing Weeds as Cover Crops; Earthworm Primer; Planting Maize with Living Mulches; Living Mulches for Weed Control; Crops Among the Weeds; The Edge Effect; Organic Herbicides; Forage Maize for Soil Improvement; Coppicing Primer; Forage Radish Primer; Weed Seed Meal Fertilizer; Intensive Rice Culture Primer; Trash Farming; Pelleted Seed Primer; Upside Down Potatoes; Maize Polyculture Trial 2007 – 2016; No-Till Hungarian Stock Squash; and the Rototiller Primer.

Would You Like To Know More?     For more information on crop rotation and Biological Agriculture please visit:  http://www.worldagriculturesolutions.com  — or —  send your questions to:  Eric Koperek, Editor, World Agriculture Solutions, 413 Cedar Drive, Moon Township, Pennsylvania, 15108 USA.

About The Author:     Mr. Koperek is a plant breeder who farms in Pennsylvania during summer and Florida over winter.  (Growing 2 generations yearly speeds development of new crop varieties).

Index Terms:     Biological Pest Control; Brix Levels (in crops); Companion Planting; Compost; Cover Crops; Crop Rotation; Holy Trinity (grain + legume + root crop polyculture); Landsberger Gemenge (mixed species forage crop); Mixed Species cover Crops; Multi-Species Cover Crops; Multiple Species Cover Crops; Polycrop; Polyculture; Sabbatical Rotation (fallow fields every 7th year); Strip Cropping; Stripper Header; Twelve Apostles (12 species forage crop mix); Weed Management; Wildflower Hay; and Wildflowers.

BIBLICAL AGRONOMY

“Plant a garden and you work hand in hand with God”.

What Is It?     “Biblical Agronomy” is a philosophy of agriculture, a system of farming based on the Christian bible and practices of the early Catholic Church.  Over time these precepts have evolved into a new way of thinking, a unique form of Biological Agriculture.

How To Do It:     Following are Bible passages with agricultural commentaries to help farmers apply biblical principles in a modern world:

“Thou shalt not kill”.  Exodus 20 : 1 – 17.   Editor’s Note:  This injunction from the “Ten Commandments” is the first principle of Biblical Agronomy and the hardest concept for most farmers to practice.  Modern industrial agriculture is largely negative.  It proceeds from the assumption that nature must be subdued.  Soils must be plowed.  Weeds must be eradicated.  Insects must be exterminated.  Farmers spend much of their time spraying deadly chemicals:  Herbicides, insecticides, fungicides — a laundry list of toxins.  Conventional agriculture is all about killing things.  Biblical agronomy takes the opposite approach:  Agriculture is about life, not death.  Farmers concentrate on genesis = creating life.  Biology replaces chemicals.  Earthworms replace plows.  Plants replace petroleum.  “Let nature do the heavy lifting”.  The principle distinction between Biblical Agronomy and conventional agriculture is that when problems arise farmers ask:  “How do I solve this without killing anything?”

“Speak to the earth, and it shall teach thee”.  Job 12 : 8.  Editor’s Note:  Successful farmers copy nature in their fields.  Two thousand years ago Roman farmers practiced “Cultura Promiscua” = companion planting:  Olives, pomegranates, figs, grapes, cereals, legumes, and vegetables were grown together on small, 5-acre farms worked by hand.  Today, we call this “agroforestry”.  Back then, it was practical husbandry.  Planting mixtures of crops without plowing was the easiest way to maintain soil fertility and prevent erosion.  Native fields and forests have no bare ground.  The earth is constantly covered with mixtures of plants.  Observe nature closely then copy what you see.

“If you enter your neighbor’s grain field, you may pick kernels with your hands, but you must not put a sickle to  his standing grain”.  Deuteronomy 23 : 25.  Editor’s Note:  The poor have the right to eat from your fields but not the right to harvest for profit.  Over the centuries this rule has evolved into the practice of leaving some part of a field unharvested so beneficial insects and wildlife have something to eat.  Modern custom is to reserve 5% to 10% of crops for “Nature’s Pantry”.  The alternative is buying costly insecticides.

“If you enter your neighbor’s vineyard, you may eat all the grapes you want, but do not put any in your basket”.  Deuteronomy 23 : 24.  Editor’s Note:  Eat your fill but do not carry any away.  Hospitality to all in need was official Church doctrine during the Middle Ages.  The right of the hungry to eat from the fields was part of the social safety net for the poor.  This practice was later codified in various “laws of hospitality”.  Modern farmers plant hedgerows and “insectary crops” to feed beneficial wildlife.  Biologically managed vineyards are sown with legumes and wildflowers.  Flowers replace insecticides.

“Do not plant two kinds of seed in your vineyard; if you do, not only the crops you plant but also the fruit of the vineyard will be defiled”.  Deuteronomy 22 : 9.  Editor’s Note:  Modern agronomists interpret this rule as a general injunction against mixing varieties of the same open pollinated species.  Isolation distances must be preserved to prevent cross-pollination so varieties remain pure.  (This rule does not apply to self-pollinated species because out-crossing rarely occurs).

“Isaac planted crops in that land and the same year reaped a hundredfold, because the Lord blessed him.”  Genesis 26 : 12.  Editor’s Note:  Historical seed to harvest ratios of 1 : 100 are not inconceivable.  Roman farmers routinely harvested 40 bushels of wheat per acre.  80-bushel yields were common when irrigated grain followed nitrogen-fixing cover crops of lentils, lupines, clover, or vetch.  Modern wheat varieties regularly produce 100-bushel yields.  The keys to bumper grain crops are no tillage, live soils, wide spacing of individual plants, living mulches to control weeds, companion plants to increase biodiversity, and irrigation to prevent water competition between grain and cover crops.  Farmers in the Middle Ages planted the “Holy Trinity” = 1 grain + 1 legume + 1 root crop.  For example:  Wheat, clover, and turnips.  Seeded at 50 pounds of wheat per acre, this polycrop easily yields 3,000 pounds (50 bushels) per acre = 1 : 60 seed to harvest ratio.

“But the seed falling on good soil refers to someone who hears the word and understands it.  This is the one who produces a crop, yielding a hundred, sixty, or thirty times what was sown.”  Matthew 13 : 33.  Editor’s Note:  Plant most any heritage variety of winter wheat in your garden, for example, Red Fife.  Space plants 1 foot apart equidistantly.  Mulch the ground and water as needed.  Each plant will yield 1 1/2 to 2 1/2 ounces of grain on average = approximately 1,305 to 2,175 seeds per plant = 68 to 113 bushels per acre.  You do not need “improved” or “hybrid” varieties to obtain high yields.  Good growing conditions are the most important factors.

“When you are harvesting in your field and you overlook a sheaf, do not go back to get it.  Leave it for the foreigner, the fatherless and the widow, so that the Lord your God may bless you in all the work of your hands”.  Deuteronomy 24 : 19.  Editor’s Note:  Modern farmers plant wildlife food plots or leave border rows unharvested.  Biological agriculture practice requires that farms be managed as ecosystems rather than individual fields.  The idea is to encourage large populations of many beneficial species.  More biodiversity = healthy ecology = better plant growth = higher yields.

“Do not go over your vineyard a second time or pick up the grapes that have fallen.  Leave them for the poor and the foreigner”.  Leviticus 19 : 10.  Editor’s Note:  Today, “good farming practice” means leaving as much plant residue as possible to prevent erosion and feed soil critters.  Grain fields are harvested with “header reels” to leave standing straw to slow wind and trap snow.  Farmers plant mixed species cover crops to feed earthworms over winter.  Fallen fruits are grazed, composted, or burned to break insect and disease cycles.  Vineyards and orchards are sown with weeds, legumes, wildflowers, and insectary crops to support large populations of beneficial insects.  More flowers = fewer pests.

“When you reap the harvest of your land, do not reap to the very edges of your field or gather the gleanings of your harvest”.  Leviticus 19 : 9.  Editor’s Note:  The right of the poor to glean fields is common to many cultures.  Modern farmers leave border rows unharvested.  Head rows are planted with “bee pasture”.  Strips of weeds, wildflowers, and insectary crops are sown within fields to feed beneficial insects.  Wildlife food plots and “insect refuges” are seeded in odd corners of land.  The idea is to encourage maximum populations of useful species.

Social Commentary:  In this modern world farmers comprise less than 2% of the United States population.  Most farms are located far from cities.  Fields are harvested by machines.  Thus, there are few rural poor and hardly any crops to glean.  This is in stark contrast to biblical times when 98% of the people were farmers, many of them hungry.  Today, feeding the urban poor is not easy.  Rural labor shortages mean there are few hands to pick fruits and vegetables.  Surplus crops often rot in the fields while Food Banks go empty.  The Bible is easy to read but difficult to practice.

“You shall not breed together two kinds of your cattle; you shall not sow your field with two kinds of seed, nor wear a garment upon you of two kinds of material mixed together”.  Leviticus 19 : 19.  Editor’s Note:  Ancient Jews had a passion for keeping everything separate.  This extended to cooking (do not mix meat and milk) and marriage (do not marry “gentiles” = non-Jews).  Modern agronomy has turned the old rules upside down.  Farmers now plant hybrid seeds and graze hybrid cattle on multiple species forage crops.  Science and practical experience have taught us that mixtures grow better than individual species grown separately.  Polycrops are the new “best practice”.  Grains and legumes are sown together.  Fields are planted with strips of unrelated crops.  The goal is maximum biodiversity.  Biology, not chemistry, keeps soils fertile and pests under control.

“But during the seventh year the land shall have a sabbath rest, a sabbath to the Lord; you shall not sow your field nor prune your vineyard”.  Leviticus 25 : 4.  Editor’s Note:  Long rotations break insect and disease cycles.  For example:  Farmers in Argentina rotate 7 years of field crops with 7 years of pasture.  (Alternating pasture and row crops is called “ley farming”).  7-year rotations are ideal for restoring soil structure and fertility.  Rule-of-Thumb:  Never plant the same crop on a field more than once every 7 years.  Reserving 1/7th = 14% of cropland for annual fallow is a great way to support large populations of wildlife and beneficial insects.

“A king who cultivates the field is an advantage to the land”.  Ecclesiastes 5 : 9.  Political Commentary:  Humility precedes learning.  There is much advantage in keeping leaders humble.  From a practical standpoint, a king busy growing his crops has little time for mischief.  Most people care not who runs the government as long as it leaves them alone.  “God bless us with a king who rules and does nothing”.  (Farmers around the world have inherent distrust of government.  This reticence comes from long experience:  When officials arrive, bad things happen).  Farmers who practice Biblical Agronomy tend to be independent spirits.  Many live off-grid.  The majority are socially conservative.  Most have root cellars or can their own vegetables.  Large numbers store a 2-year food supply.  “Biblical” farmers are much like the Amish:  They are part of our modern culture yet live apart from it.

“But on the seventh year you shall let it rest and lie fallow, so that the needy of your people may eat; and whatever they leave the beast of the field may eat.  You are to do the same with your vineyard and olive grove”.  Exodus 23 : 11.  Editor’s Note:  Planting monocrops year after year depletes soil fertility and promotes outbreaks of pests and diseases.  Farmers practicing Biblical Agronomy avoid these problems by keeping 7-year rotations and planting polycrops.  For example:  “The Twelve Apostles” is a multi-species forage mix including 4 grains + 4 legumes + 4 root or forb crops.  Mixed species produce more nutritious forage and higher yields.  “Tithing” 1/7th = 14% of cropland for annual fallow (weeds or mixed species cover crops) promotes large numbers of beneficial insects.  The good bugs eat the bad bugs.

“I will feed them with good pasture, and on the mountain heights of Israel shall be their grazing land”.  Ezekiel 34 : 15.  Editor’s Note:  “Mixed Farming” = growing plants and animals has been the foundation of agriculture since historic times.  The reason is simple:  Plants and animals have evolved to grow well together.  While it is possible to raise plants and animals separately, monocultures are much more susceptible to insects, diseases, and environmental stress.  Biological balance is a key principle of Biblical Agronomy.  Pastures grow better when grazed.  Crops yield more when dunged.  Animals stimulate plants to grow better.  Healthy plants keep animals in good condition.

“What the cows eschew the goats relish.  That which the goats ignore the sheep enjoy.  Upon what the sheep leave the birds feast.  Whatever the fowl demurs the worms delight.  In this way the land feeds all”.

“Thirty milking camels and their colts, forty cows and ten bulls, twenty female donkeys and ten male donkeys”.  Genesis 32 : 15.  Editor’s Note:  Smart farmers use rotation and polycrops to control pests and diseases.  The same principles apply to raising animals.  Herds should be rotated to improve pastures.  Mixed species control weeds and parasites.  For example:  Range chickens 3 or 4 days behind cattle.  Chickens eat fly maggots and keep pastures sanitary.  Every mouth eats something different and so the whole farm produces more food.

“The best medicine is the watchful eye of the herdsman”.

“Know well the state of your flocks, and pay attention to your herds”.  Proverbs 27 : 23.  Editor’s Note:  Anciently, herds grazed randomly and were moved irregularly.  Plants were overgrazed and pastures declined.   Modern farmers practice “Intensive Rotational Grazing”:  Animals are crowded into small paddocks then moved to fresh pasture every 12 to 24 hours.  Each meadow is rotated on a 30-day or longer calendar so plants have time to regrow.  Pasture rotation produces more forage and breaks parasite reproduction cycles.

“The sea coast will be pastures, with cottages for shepherds and folds for flocks”.  Zephaniah 2 : 6.  Editor’s Note:  Piling, carting and spreading manure is hard work.  “Sheep Folding” is easier:  Flocks are crowded into small fields at dusk where they urinate and defecate all night long.  At dawn, animals are turned into fresh pasture.   Fertilized ground can then be plowed and sown.  Alternatively, broadcast seed into standing vegetation then fold animals overnight.  Hooves trod seed into ground.  Trampled plants cover and protect germinating crops.  This is called “Stomp Seeding”.  Roman farmers averaged 40 to 50 bushels of wheat per acre using these methods.  Biblical Agronomy is all about balance.  Plants and animals grow well together.

“I shall become enlightened for the sake of all living things”.

Ten Agricultural Commandments:  Following is a list of biological principles for Biblical Agronomy.  Use these guidelines to make farm management decisions.

I.  Do Not Kill.  Find another way.  Use the least intrusive methods.  “Walk lightly upon the land”.

“Farmers are keepers of the earth”.

II.  Keep the Agricultural Sabbath.  Follow 7-year rotations.  Long rotations control most insects and diseases without need for human intervention.  Crop rotations improve soil tilth and fertility.

“At Nature’s table all are welcome”.

III.  Tithe for Nature.  Provide hospitality to all in need. Leave border rows unharvested.  Plant wildlife food plots.  Reserve 5% to 10% of farmland for hedgerows, windbreaks, and wood lots.  Wildlife are an essential part of the agricultural ecosystem.

“God loves all his creatures, even bugs”.

IV.  Feed the Insects.  Reserve 5% to 10% of cropland for native weeds, insect refuges, bee pasture, and insectary crops.  Conventional monocrop farms are “green deserts” without nectar or pollen for beneficial insects.  Feed the good bugs and they will protect your crops.

V.  Sow Polycultures Whenever Practical.  Plant the “Holy Trinity” and “The Twelve Apostles”.  Mixed species are the key to soil fertility and high yields.

VI.  Do Not Plow.  Practice zero-tillage whenever possible.  Symbiotic fungi are essential to plant health and nutrition.  Beneficial fungal networks must be protected at all times or soil ecology will collapse.

VII.  Keep Soil Covered at All Times.  Soil is a living organism that requires air, water, food, and shelter.  Keep it warm during winter and cool over summer.  Do not let topsoil dry out.  Prevent crusting and compaction so soil can breathe and rain can enter.  Protect fields with mulch or live plants 365 days yearly.  “Keep fields green”.

“Good farmers grow fungi.  The fungi grow the crops”.

VIII.  Feed the Fungi.  Plants feed sugar to fungi.  Fungi provide water and minerals to plants.  Trading requires live roots or fungi die or go dormant.  Plant productivity is directly related to the number and extent of fungal networks.  More fungi = higher yields.  Good farmers keep their fields covered with growing plants year-round.

“Roots in the ground all year round”.

IX.  Encourage Maximum Biodiversity.  Genesis is the heart of Biblical Agronomy.  Agriculture is all about creating life.  Ecosystem productivity and stability are directly related to number of species.  More species = healthy ecology = higher yields.  Good farmers plant many varieties to provide food and shelter for all God’s creatures.

X.  Grow Crops and Animals Together.  Plants and animals are like two sides of an arch:  Remove one and the other falls.  Mixed farms have more biological stability and greater resilience to environmental stress and economic change.  Wide diversity protects farmers from crop failures and uncertain markets.

“The Lord gave the word and great was the company of the creatures”.

The Eleventh Commandment:     “Thou shalt inherit the holy earth as a faithful steward conserving its resources and productivity from generation to generation.  Thou shalt safeguard thy fields from soil erosion, thy living waters from drying up, thy forests from desolation, and protect thy hills from overgrazing by the herds, that thy descendants may have abundance forever.  If any shall fail in this stewardship of the land, thy fruitful fields shall become sterile stony ground or wasting gullies, and thy descendants shall decrease and live in poverty or perish from off the face of the earth”.  [Walter Clay Lowdermilk, soil conservationist, radio broadcast from Jerusalem, June 1939].

Wrapping It Up:     Biblical Agronomy is not so much a rigid set of rules but rather a way of thinking about biology.  Adapt basic principles to fit local conditions.  The key is to be practical rather than zealous.  God will not smite you if you spray the locusts.

Agronomy Notes:

Bee Pasture = Plants selected for long flowering seasons and large amounts of nectar and pollen.  Wild bees and other native insects provide most of the pollination for agricultural crops.  Good farmers sow 5% to 10% of farmland with bee forage.  (If you cannot afford seed plant native weeds).

Border Rows = Crops growing along field edges.  Farmers often leave 2 to 4 rows unharvested to feed wild animals.  Border row dimensions are determined by the width of planting and harvesting machinery.

Head Rows = Empty space at field ends used for turning tractors and farm equipment.  On conventional farms head rows are covered with sod or left bare.  On biologically managed fields head rows are planted with clover, wildflowers, native weeds, or other “bee forage”.  The idea is to provide food and shelter to encourage large numbers of beneficial insects.

Hedgerows = Narrow lines of small trees or shrubs planted to contain animals, slow wind, trap snow, moderate micro-climate, and provide food and shelter for beneficial wildlife.  Ideal hedgerows are composed entirely of economic species that can be harvested for nuts, berries, fruits or other cash crops.  Plant 40 or more species per linear mile for high biodiversity.  Hedgerows support large populations of insect eating birds.

Insectary Crops = Plants with many small flowers ideal for feeding beneficial insects.  For example:  Anise, buckwheat, caraway, clover, coriander, dill, and fennel.  These can be combine harvested and the seed sold for profit.

Insect Refuges = Standing crops left unharvested so insects have undisturbed habitat for feeding and breeding.  For example:  If you mow a hay field all at once the insects have nowhere to go and nothing to eat.  The solution is to leave a strip of meadow unharvested so insect populations are preserved.  (If land is scarce sow native weeds in odd corners or other spaces unsuitable for farm machinery).

“Rotational Grazing Rule-Of-Thumb:  Eat 1/3, Stomp 1/3, Leave 1/3”.

Intensive Rotational Grazing = Crowding animals into small paddocks then moving herd to fresh pasture every 12 to 24 hours.  Pastures are rotated on 30-day or longer cycles so plants have time to regrow.  Rotational grazing produces large amounts of highly nutritious forage.  400% yield increases are possible with mixed species forage crops. Long rotations break insect, disease and parasite reproduction cycles.  (Mob grazing is a similar practice).

Ley Farming = Rotating pasture and field crops to control weeds and fertilize soil.  Combining animals in farm rotations boosts crop yields.  Manure stimulates plant growth more than equal weights of fresh or composted grass.  (Strange things happen in a cow’s stomach.  Grass goes in and super-charged fertilizer comes out.  How this happens is scientific mystery).

Living Mulches = Short plants sown to cover the soil and prevent weed growth.  Cash crops are seeded or transplanted into the living mulch using no-till equipment.  For example:  Peppers can be transplanted into an established sward of Dutch White Clover (Trifolium repens).  The clover smothers weeds and feeds nitrogen to the cash crop.

Mixed Farming = Growing a wide variety of plants and animals on the same farm.  Including pasture and hay in crop rotations.  Grazing herds on harvested fields.  Using animals to control weeds.  Spreading manure to fertilize cash crops.  Mixed farms are more biologically stable and much less susceptible to economic and environmental changes.

Mob Grazing =  Concentrating very large herds on small pastures is called “Mob Grazing”.  Density is about 800 to 1,000 cows per acre and animals are shifted every 1 or 2 hours.  Meadows are rotated on long 6 to 12 month cycles so plants regrow.  High density and long rotations mimic natural migration of buffalo and other vast herds on prairie ecosystems.  (Intensive Rotational Grazing is a closely related practice).

Mulch-In-Place = Sow a fast-growing cover crop that produces large amounts of biomass (stems and leaves).  Kill the mature cover crop with a roller-crimper or sickle-bar mower.  Seed or transplant through the mulch using no-till equipment.  Mulch-In-Place provides 90% to 95% weed control, as good or better than glyphosate (Roundup) or other conventional herbicides.

Multiple Species Cover Crops = Mixtures of plants grown to control weeds, feed livestock, and fertilize fields.  For best results sow many species to enhance biological synergy.  Mixed plants feed soil bacteria and support vast networks of beneficial fungi.  The fungi provide water and nutrients to the plants.  Basic cover crop mixes include:  2 cool season grasses + 2 cool season legumes + 2 cool season broad leaf plants + 2 warm season grasses + 2 warm season legumes + 2 warm season broad leaf plants + 2 or more root crops = 14 or more species.  Use no-till equipment to drill 20 pounds of seed per acre in 2-inch deep furrows spaced 7.5 inches apart.

Polyculture = Growing 2 or more species together.  Polycrops greatly reduce insect pests and produce large amounts of sugar to feed soil bacteria and fungi.  Most soil humus is made by bacteria that eat sugar exuded by plant roots.  Agricultural productivity is directly related to the number of polyculture species.  More species = more leaves and stems = more photosynthesis = more sugar exuded by roots = larger populations of soil microbes = faster nutrient cycling = higher yields.  Some farmers plant cover crops with 60 species!  “There is strength in numbers”.

Strip Cropping = Polyculture system adapted to farm machinery.  Divide farms or fields into narrow strips following land contours.  Plant adjacent strips with unrelated crops to maximize edge effects and increase biodiversity.  Adjust strip widths to match planting and harvesting equipment.  For best results strips should not be wider than 200 feet on flat land or 50 feet on hillsides.  Planting a variety of crops spreads economic and biological risk.  Strip cropping supports large populations of beneficial insects that keep pests under control.

Weed Farming = Manage weeds just like any other cover crop.  (A)  Fertilize and irrigate weeds to promote maximum growth, then flatten with a roller-crimper or sickle-bar mower.  Immediately seed or transplant through the weed mulch using no-till equipment.  (B)  Overseed native weeds with clover or other legumes to make a cheap multi-species cover crop.  (C)  Harvest weeds like silage using a forage chopper.  Use chopped weeds to mulch cash crops.  (D)  For biological pest control, plant weeds next to crops needing protection.  Alternatively, mow strips through tall weeds then plant cash crops down the rows.  Crops grown in weeds rarely have pest problems.  (E)  Native weeds support enormous populations of beneficial insects.  Good farmers reserve 5% to 10% of cropland for weeds.  For best results grow weeds in narrow strips within fields and around field borders.  (F)  Sow weeds to heal bare or worn-out soils.  Wildflower hay can be baled and spread for this purpose or haul weed seeds from the nearest grain elevator.  (G)  Grind weed seeds in a roller mill to make free fertilizer.  Use weed seed meal just like cotton seed meal or other organic plant food.  (H)  When insects threaten to overwhelm, soak chopped weeds in water, strain, then spray “weed tea” on plants.  Weed juice chases away most bugs.

Wildlife Food Plots = Small fields planted with grains, legumes, forbs, and root crops to feed deer, pheasants, turkeys, rabbits, and other game animals.  Wildlife plots are typically seeded on poor, wet or rocky land unsuitable for hay or cash crops.

Windbreaks = Rows of trees, shrubs, perennial Pampas grass, or other vegetation planted to slow wind, stop erosion, trap snow, and moderate micro-climate.  For best results plant windbreaks no closer than 50 feet nor farther than 150 feet apart.  Effective wind protection extends downwind 10 times average tree height.  Plant 40 species per linear mile for high biodiversity.  Windbreaks increase average yields 15% by reducing water loss from crop leaves.  (Common synonyms include:  Greenbelts, Hedgerows, and Shelterbelts).

Wood Lots = Small areas of forest grown to provide firewood.  For highest yield manage trees by coppicing:  Cut down 7-year old trees then harvest on 7-year cycles when stump or root sprouts reach 2 to 3 inches diameter.  Divide forest into 7 sections then harvest each part sequentially.  Coppiced trees live hundreds of years because the are constantly renewed.

Related Publications:     Cover Crop Primer; The Twelve Apostles; Biological Agriculture in Temperate Climates; Polyculture Primer; Strip Cropping Primer; Worm Farming; Managing Weeds as Cover Crops; Earthworm Primer; Planting Maize with Living Mulches; Living Mulches for Weed Control; Crops Among the Weeds; The Edge Effect; Organic Herbicides; Forage Maize for Soil Improvement; Coppicing Primer; Forage Radish Primer; Weed Seed Meal Fertilizer; Intensive Rice Culture Primer; Trash Farming; Pelleted Seed Primer; Upside Down Potatoes; Maize Polyculture Trial 2007 – 2016; No-Till Hungarian Stock Squash; and the Rototiller Primer.

Would You Like To Know More?     For more information on biological agriculture and practical polyculture please visit:  http://www.worldagriculturesolutions.com  — or —  send your questions to:  Eric Koperek, Editor, World Agriculture Solutions, 413 Cedar Drive, Moon Township, Pennsylvania, 15108 USA.

About The Author:     Mr. Koperek is a plant breeder who farms in Pennsylvania during summer and Florida over winter.  (Growing 2 generations yearly speeds development of new crop varieties).

THE TWELVE APOSTLES

What Is It?     “A multi-species cover crop containing 12 varieties often 4 grains, 4 legumes, and 4 root crops”.

12 Apostle mixes are frequently planted by farmers practicing “Biblical Agronomy”.

For example:  Oat, pea, turnip, rye, winter vetch, mangel-wurzel (stock beet), wheat, clover, forage radish, barley, frost bean (fava bean), and rutabaga.

Other possible species include:  Millet, sorghum, buckwheat, maize, teff, sunflower, lentil, lupine, runner bean, sunn hemp, soy bean, flax, rapeseed, safflower, kale, and many other varieties.  Choose what grows well on your farm.

“Melange:  A mixture of grains, legumes, and root crops grown to feed animals and improve soils”.

All melanges contain at least 3 components:  1 grain + 1 legume + 1 root crop = “Holy Trinity”.

“We sowed the Holy Trinity.  Father Michael blessed the crop and our cattle thrived”.

For example:  Thomas Jefferson sowed buckwheat, winter vetch, and turnips to cure “tired soils”.

There is nothing magical about the number 12.  Melanges often contained fewer species.  Farmers blended odds and ends from their granaries or whatever they could buy cheaply.

Growing several species together (polyculture) is not a new idea.  The practice dates to Roman times.  Middle Age farmers called mixed plants “melanges”.  Today, modern agronomists call them “multi-species cover crops”.

Call it what you will, but “bio-diversity” (many species) is a key principle of Biological Agriculture.  Life breeds life.  Each additional species creates more food and shelter for myriad lifeforms.  Grow multi-species cover crops and soon your soil will teem with billions of critters.  More critters = faster nutrient cycling = higher yields.

“Feed the critters and the critters will feed your crops”.

I have not purchased fertilizer (chemical or organic) in 19 years.  Truly, there is power in numbers.  More species means more money in my pocket.

Try this on your farm:  Keep your ground covered with growing plants year-round.  Never plant a crop by itself.  Always plant mixed species.  Copy nature in your fields.  You will be glad you did.

“Roots in the ground all year round”.

Agronomy Notes:

If you do not have experience with polycultures, try something simple.  Winter grains and Dutch White Clover (Trifolium repens) can be planted together at the same time.  (Broadcast clover at 12 pounds per acre).  Clover suppresses weeds and provides nitrogen to the cereal crop.  When the grain is harvested clover covers the field.  The following season mow first then seed or transplant into clover living mulch using no-till equipment.

Different sized seeds can be mixed in the same seed box and drilled into a common furrow.  Big seeds like maize, sunflower and peas break through the soil so little seeds like clover and turnips germinate easily.  Furrows spaced 7.5 inches apart are ideal for most multi-species cover crops.

If desired, seeds can be mixed with cornmeal or sawdust to provide more volume for even distribution.

Small seeds like wheat, vetch and sugar beet can be surface seeded.  For best results use pelleted seed.  Broadcast into standing vegetation then immediately flatten plants with a roller-crimper or cut with a sickle-bar mower.  Surface mulch covers and protects germinating seedlings.

Large seeds like maize, sunflower and beans are best planted underground with no-till equipment.  Surface sow large seeds only with monsoon rains or daily irrigation.

When sowing grains mix several varieties with the same maturity date.  For example:  3 varieties of wheat or 4 varieties of barley.  Planting multiple varieties often increases yields 5% to 7%.  You can also sow different species together:  Mixtures of rye and wheat are called maslin; blends of barley and oats are called dredge; a polyculture of oats, peas and beans is called bulmong.  Mixed grains have better resistance to insects and diseases.

Plant mixtures grow better than individual species.  Sow barley, pinto beans, and tillage radish in separate plots.  Plant a fourth plot with all 3 species.  Come the drought and monocrops shrivel and die, but the polycrop remains green.  Mixed species help each other.  They also support vast networks of beneficial fungi.  The fungi provide water and nutrients to the plants.

“Good farmers grow fungi.  The fungi grow the crops”.

Mixed plants capture more sunlight and produce more biomass.  Rule-of-Thumb:  A polycrop of 1 grain + 1 legume + 1 root crop produces 2 times more vegetation by weight than the same species grown separately.

Polycultures increase grain yields substantially.  For example:  Oats grown alone yielded 43 bushels per acre.  Oats grown with peas and turnips yielded 62 bushels per acre.

Rule-of-Thumb:  You need at least 8 species to get significant benefits from polycultures.  For example:  Oats, peas and turnips yielded 62 bushels per acre.  Oats grown with peas, pinto beans, Dutch white clover, Japanese long turnips, tillage radish, stock beet, and rutabaga yielded 76 bushels per acre.  More species = more biological synergy = higher yields.  For example, mixtures of 12 to 16 species out-yield blends of 8 or fewer species.  Communities of 30 species yield more forage than pastures with only 20 varieties.

Pair tall growing cash crops with short height legumes.  For example:  Sow tall heritage varieties of wheat with Dutch white clover.  Dutch clover grows only 6 inches high so it competes minimally for sunlight with companion crops.  (Planting clover with dwarf or semi-dwarf cereals reduces yields 30% to 50%.  Clover shades grass stems which reduces photosynthesis.  Less sunlight = lower yields).

Sow non-climbing beans with maize for efficient combine harvest.  Vines without tendrils are the best companion plants.  For example:  Maize planted with climbing velvet bean (Mucuna pruriens) yielded 128 bushels per acre.  Maize seeded with non-climbing pinto beans yielded 208 bushels per acre.  Similarly, oats planted with climbing peas yielded 19% less than oats seeded with dwarf peas.

Earthworm (Lumbricus terrestris) growth is determined mostly by the amount and quality of available food.  Plant monocrops and worms take 3 years to reach sexual maturity.  Sow polycrops and earthworms take only 2 years to reproduce.

Earthworms thrive on balanced diets of mixed plants.  1 acre of orchard grass (Dactylis glomerata) supported a population of 361,000 earthworms.  1 acre of 50% orchard grass + 50% Dutch white clover produced 647,000 worms per acre.  Earthworm numbers soared to 2,150,000 per acre planted with a 16 species mix of grasses, legumes, forbs, and root crops.

1,350,000 earthworms per acre feeding on a 20-variety cover crop mix produce 2,700 pounds of surface castings each day of the growing season = about 1 ounce of manure per square foot = 68 pounds of available nitrogen, 35 pounds of phosphorous, and 41 pounds of potassium per acre daily.  That is more than enough fertilizer for maize, sugar cane, potatoes, or any crop a farmer wants to grow.

“Feed the worms and they will tend your crops”.

Cereals grown with companion plants are less susceptible to lodging = falling down.  Over a 61-year period, oats grown by themselves lodged 38 times.  Oats sown with dwarf peas and turnips lodged only 11 times.  In all 11 cases full crops were harvested by cutting and swathing oats into windrows.  Peas and turnips held oat stems above ground so the grain did not spoil in the mud.  (Grain on the ground cannot be harvested due to risk of contamination by pathogenic mold and bacteria).

Weedy fields can be improved by surface planting with clover or other small-seeded legumes.  Large seeded legumes like peas and beans should be drilled with no-till equipment.  The combination of native weeds and nitrogen-fixing legumes makes a cheap mixed species cover crop that will support large populations of earthworms and beneficial insects.  For biological pest control reserve 5% to 10% of cropland for native weeds.

German farmers have a long history of planting Landsberger Gemenge” = Hill Mixture = Mountain Mixture = Waste Land Mixture = multi-species forage crop sown on land unsuitable for plowing.  Typical mixes include 1 cereal or grass + 2 legumes + 1 cabbage family plant or root crop.  For example:  Winter rye + red clover + winter vetch+ forage kale or turnip.  The combination of cereal, pulse, forb, and root crops makes an ideal balanced diet for grazing animals.  Cattle gain 2.5 to 3.5 pounds daily when feeding on forage mixtures of 4 to 5 species.

Plant mixtures extend growing seasons by increasing soil and air temperatures.  Seed tall, medium and short varieties to hold warm air near soil surface.  Multiple species can raise air temperatures 10 degrees Fahrenheit and expand growing seasons by 30 to 60 days.

Related Publications:     Crop Rotation Primer; Biblical Agronomy; The Twelve Apostles; Biological Agriculture in Temperate Climates; Polyculture Primer; Strip Cropping Primer; Worm Farming; Managing Weeds as Cover Crops; Earthworm Primer; Planting Maize with Living Mulches; Living Mulches for Weed Control; Crops Among the Weeds; and The Edge Effect.

Would You Like To Know More?     For more information on biological agriculture and practical polyculture please visit:  http://www.worldagriculturesolutions.com  — or —  send your questions to:  Eric Koperek, Editor, World Agriculture Solutions, 413 Cedar Drive, Moon Township, Pennsylvania, 15108 USA.

About The Author:     Mr. Koperek is a plant breeder who farms in Pennsylvania during summer and Florida over winter.  (Growing 2 generations yearly speeds development of new crop varieties).

BIOLOGICAL AGRICULTURE IN TEMPERATE CLIMATES

A Seminar at Cornell University, Monday 19 November 2018. Sponsor: Norman Uphoff, Professor Emeritus, International Programs SRI Project, College of Agriculture and Life Sciences. Guest Speaker: Eric Koperek = erickoperek@gmail.com. Website: http://www.worldagriculturesolutions.com

My ancestors were literally dirt poor = without soil. They farmed abandoned quarry land. Over the course of 8 centuries they created 10 to 15 feet of topsoil = 1/5 to 1/4 inch yearly. This is how they did it:

BIOLOGICAL AGRICULTURE PRINCIPLES

Copy Nature: “Gardeners are the best farmers”. Observe nature closely then mimic what you see. How do you grow your garden? What do you see in the forest? Copy this in your fields. The idea is to combine biological processes with labor efficient agricultural machinery.

Keep Fields Green: Fields should be covered with growing plants 365 days yearly. Do not waste sunlight. The goal is to produce the maximum possible amount of organic matter per square foot each year. More plants = more organic matter = increased populations of soil “critters” = faster nutrient cycling = higher crop yields. “Roots in the ground all year round”.

No Soil Disturbance: Avoid plowing, disking, harrowing, and cultivation whenever practical. Transplant crops or surface sow using pelleted seed and no-till equipment. Tillage kills earthworms and destroys fungal networks = lower crop yields. “Good farmers grow fungi. The fungi grow the crops”.

Keep Soil Covered: Use living mulches, dead mulches, or growing crops to keep fields covered year-round. Control weeds with Mulch-In-Place. Never leave soil bare not even for a single day. Harvest and replant fields the same day or try relay planting: Sow the following crop several weeks before the first crop is harvested.

Worm Farming:  Use earthworms (Lumbricus terrestris) to till and fertilize fields. Earthworms are the key to biological soil management. Worms eat their weight in soil and organic matter daily. One million earthworms per acre = 1 ton of worm manure daily. More worms = more nutrients = higher crop yields. “Feed the worms and the worms will tend your crops”.

Increase Biological Diversity: Grow many crops rather than one crop. Plant polycultures whenever practical. Multiple crops diminish risk of crop failure. “Life breeds life”. More crops = more biological activity = higher yields.

Watershed Management: Agriculture is all about water management. Mind the water and everything else will fall in place. The goal is zero runoff = trap every drop of rain and flake of snow that falls on the land. Store water for dry seasons. Build ponds wherever possible. Irrigate whenever practical. Water is the best investment a farmer can make. One drought pays for an irrigation system.

Biological Nitrogen Fixation: Grow your own fertilizer. Rotate nitrogen fixing cover crops with cash crops. Plant small grains and clover together. Seed maize into roller-crimped Red Clover (Trifolium pratense). Transplant vegetables into Dutch White Clover (Trifolium repens). Topseed cash crops with low growing legumes. Include 50% legumes in pasture and cover crop mixes.

Increase Edge Effects: Divide big fields into smaller fields. Plant hedgerows and windbreaks. Mix fields with pastures, orchards, hay fields and forest. Grow unrelated crops in narrow strips = strip cropping. Plant borders and head rows with clover and insectary crops. The idea is to attract and maintain large populations of beneficial insects. “The good bugs eat the bad bugs”.

Plant Multi-Species Cover Crops: Mixtures of plants repel insect pests, fix more nitrogen, better resist drought, and produce more organic matter than plants grown alone. Plants in mixtures cooperate with each other sharing water and nutrients through fungal networks. Multi-species cover crops can fix more than 100 pounds of nitrogen per acre; this nitrogen is not accounted by conventional soil tests. Mixed species cover crops promote maximum earthworm populations, up to 8 million worms (8 tons) per acre = 184 worms per cubic foot of topsoil.

Long Rotations Increase Yields: 7-year rotations best control soil diseases and insect pests. Never follow similar crops in sequence (oats & wheat; carrots & potatoes; lettuce & spinach). Never follow crops in the same botanical family (tomatoes & peppers; pumpkins & squash). Never follow plants sharing common pests or diseases.

Grass Crops Make Deep Soils: Integrate perennial grass crops into field rotations. This is called Ley Farming. Perennial pastures and grazing animals promote large earthworm populations = 1 ton per acre = 1 million worms per acre = 23 worms per cubic foot of topsoil = 120 miles of earthworm burrows per acre. Worms produce vast amounts of castings = manure, more than needed for any commercial crop.

Integrate Animals and Crops: Use grazing animals to fertilize fields. Practice Rotational Grazing, Mob Grazing, Stomp Seeding, Cattle Penning, and Folding = Yarding to improve fields and increase yields. Sustainable agriculture is difficult to achieve without farm animals.

Plant Weeds and Crops Together: Reserve 5% to 10% of farm for native weeds. Plant weeds in narrow strips within and around fields. Grow orchards and vine crops in weeds. Weeds provide food, shelter, and alternate hosts for beneficial insects that protect cash crops. “Weeds are the shepherds of the garden”. More weeds = less insect pests.

Plant Flowers with Crops: Most beneficial insects have small mouth parts and so they need tiny flowers on which to feed. Healthy farms grow many small-flowered plants to encourage maximum populations of helpful insects. For best results plant flowers and weeds next to crops needing protection. Sow flowers around fields, orchards, vineyards — anywhere there is open space. More flowers = less pests.

Making Sense of It All

Biological agriculture requires patience. Converting a field from conventional chemical agriculture usually requires 12 to 15 years before the soil is healthy enough to sustain commercial yields without added fertilizer.

Active biological soils easily produce 160 bushels (8,960 pounds) of maize per acre without plowing, fertilizer, herbicides, or cultivation. Irrigated fields can exceed 200 bushels (11,200 pounds) per acre.

On biologically managed soils, most Japonica rice varieties yield 3.5 ounces of grain per plant = 9,528 pounds per acre when plants are direct seeded 12 inches equidistantly on drip irrigated fields. (Indica rice varieties yield less, about 1.5 ounces of grain per plant = 4,083 pounds per acre).

Related Publications:     Crop Rotation Primer; Biblical Agronomy; The Twelve Apostles; Polyculture Primer; Strip Cropping Primer; Worm Farming; Managing Weeds as Cover Crops; Intensive Rice Culture Primer; Weed Seed Meal Fertilizer; Earthworm Primer; Planting Maize with Living Mulches; Living Mulches for Weed Control; Crops Among the Weeds; Forage Maize for Soil Improvement; Forage Radish Primer; The Edge Effect; Coppicing Primer; and Rototiller Primer.

Would You Like To Know More? Please contact the Author directly if you have any questions or need more information about Biological Agriculture.

Eric Koperek. Office Address: 413 Cedar Drive, Moon Township, Pennsylvania, 15108 United States of America. Cellular Telephone Number: 412-888-7684. E-Mail Address: erickoperek@gmail.com. Website Address: http://www.worldagriculturesolutions.com

About The Author: Mr. Koperek is a plant breeder who farms in Pennsylvania during summer and Florida during winter. (Growing 2 generations yearly speeds development of new crop varieties).

 

 

 

 

 

 

STRIP CROPPING PRIMER

What Is It?     Strip cropping is a natural way to control pests without using insecticides.  Unrelated crops are grown in narrow strips to increase biodiversity and maximize edge effects.  Beneficial insects flourish and eat harmful bugs.

The Edge Effect:     Life increases proportionately to the boundary area between different environments.  For example, a meadow and a hedgerow are unique ecologies.  Each has its own mixture of species.  There is an abundance of food and shelter along the edge where the two environments meet.  Interaction along this edge promotes large populations and increased diversity.

Ecology Math:     Square fields have less edge than rectangular fields.  For example, a square field measuring 300 feet on each side has 1,200 feet of edge (300 feet per side x 4 sides = 1,200 feet).  Take the same field and stretch it into a rectangle 100 feet wide x 900 feet long.  Both fields have the same area (90,000 square feet) but the rectangular field has 2,000 feet of edge (900 + 900 + 100 + 100 = 2,000 feet).  The perimeter of the rectangular field is 40% larger than the square field.  More edges = more food and habitat = more species and larger populations.  Hunters understand this instinctively.  Long, narrow fields have more browse (twigs and buds) along their perimeter.  More hedgerow = more browse = more food = more deer.

Agricultural History:     Farming in the Middle Ages was not easy.  Wood plows were heavy and difficult to turn.  The solution was to make long, narrow fields.  Long fields required fewer turns.  Each field was one “furrow” long = 1 furlong = 1/8th mile = 220 yards long x 22 yards wide = 4,840 square yards = 1 acre.  A man with a team of oxen took a whole day to plow 1 acre.  Adjacent fields were planted to unrelated crops, for example:  Peas, Wheat, Turnips, and Pasture.  Narrow strips and diverse crops increased edge effects supporting large populations of beneficial insects.  The good bugs ate the bad bugs.

Agroecology:     Wind the clock back to when knights went clanking around in armor.  Northwest France (Normandy) was divided into thousands of little fields surrounded by hedgerows.  Each field measured about 1 1/4 acres.  This mixture of small fields and hedgerows is called bocage.  The bocage landscape contains hundreds of miles of biological edges = vast populations of predatory and parasitic insects.  Modern farmers in the bocage rarely have pest problems.  Significant outbreaks occur about once every 20 years and are mostly self-correcting without insecticides.

“Altering the geometry of fields costs nothing and can reduce or eliminate pesticide use.”

Practical Polyculture:     Plant 4 rows of corn then 4 rows of soybeans.  Repeat this pattern across fields and farms following land contours.  Result:  Pests go down 50% and corn yields go up 15% (because of increased light penetration into the crop canopy).

  • Alternate tall and short crops.  Insect pests do not like fields with mixed light and shade.  Example:  Sunflowers — Alfalfa — Barley — Lentils
  • Adjust strip widths to fit planting and harvesting equipment.  Try to keep strip widths as narrow as mechanically practical.  Narrow strips better control insect pests.  Plant strips no wider than 200 feet to encourage rapid movement of beneficial insects into fields.  Example:  Hay (150 feet) + Soup Beans (75 feet) + Safflowers (75 feet)
  • Plant adjacent strips to unrelated crops.  Plant as many different crops as economically practical.  Diverse crops reduce insect pests and spread market risk.  Example:  Wheat — Peas — Flax — Soy Beans — Barley — Alfalfa
  • Seed grains and legumes together.  Legumes fix nitrogen, protect soil and control weeds.  Example:  Winter Wheat + Dutch White Clover  — or —  Field Corn + Red Clover  — or —  Oats + Forage Peas  — or — Winter Rye + Winter Vetch
  • Alternate legumes with non-legumes.  Legumes improve soil, feed earthworms and attract beneficial insects.  Example:  Canary Seed — Lentils — Barley — Soy Beans — Wheat — Field Peas — Flax — Alfalfa
  • Plant windbreaks not closer than 50 feet nor farther than 150 feet apart.  Windbreaks increase biological diversity and help crops grow better.  Windbreaks do not have to be great belts of trees.  A single row of shrubs or perennial pampas grass will slow wind and increase crop humidity.  Example:  Trees (25 feet wide) + Cropland (150 feet wide)  — or —  Shrubs (10 feet wide) + Cropland (100 feet wide)  — or — Pampas Grass (3 feet wide) + Cropland (50 feet wide)
  • Alternate strips of native weeds with cropland.  Space weed strips not farther than 200 feet apart.  Weeds should comprise at least 5% to 10% of total cropland.  Native weeds are essential to provide food and shelter for beneficial insects.  Example:  Weed Strip (15 feet) + Cropland (135 feet)
  • Plant several varieties of the same crop together.  Choose varieties that have the same harvest date.  Varieties can be mixed or drilled in separate rows.  Alternatively, plant similar species that ripen together.  For example:  Winter Wheat + Winter Rye.  Genetic diversity reduces the chances of crop failure due to weather, disease or insects.

Try This On Your Farm:     Divide big fields into narrow strips and watch your pest problems go away.  Strip cropping combines the biological advantages of polycultures with the economic efficiency of farm machinery.

Related Publications:     Crop Rotation Primer; Biblical Agriculture; The Twelve Apostles; Maize Polyculture Trial 2007-2016; Managing Weeds as Cover Crops; Trash Farming; No-Till Hungarian Stock Squash; Planting Maize with Living Mulches; Living Mulches for Weed Control; 2012 Tomato and Sweet Potato Polyculture Trial; Crops Among the Weeds; and The Edge Effect.

Would You Like To Know More?     Contact the Author directly if you have any questions or need more information about polycultures or strip cropping.  Please visit:  http://www.worldagriculturesolutions.com  — or — send your questions to:  Eric Koperek, Editor, World Agriculture Solutions, 413 Cedar Drive, Moon Township, Pennsylvania, 15108 United States of America  — or — send an e-mail to:  http://www.worldagriculturesolutions.com

About The Author:     Mr. Koperek is a plant breeder who farms in Pennsylvania during summer and Florida during winter.  (Growing 2 generations yearly speeds development of new crop varieties).

MANAGING WEEDS AS COVER CROPS

The trick to biological farming is knowing how to manage weeds.  “Manage” does NOT mean “kill”.

Internet trolls are bombarding my e-mail box with comments like:  “You can’t plant crops in weeds!  That’s why they invented tractors”.  Horse power is irrelevant and yes, you can plant crops in weeds:  I manage 90,000 acres without herbicides or mechanical cultivation.  Here is how I do it:

(1)  Manage Weeds as Cover Crops.  Think of weeds as a multi-species cover crop that costs nothing to seed.  This will save you about $40 per acre, right off the bat.  $40 x 90,000 acres = $3,600,000.  We are not talking tree-hugging here.  This is serious agronomy.

Grow weeds to protect your top soil.  A typical corn-soybean farmer in Iowa loses 2 1/2% of his land yearly = 20 tons of earth per acre = $450 per acre at $22.50 per ton (U.S. average top soil price, delivered).  Weeds have value.

If you don’t have enough weeds for a winter cover crop, seed 3 to 4 bushels of oats per acre.  Oat roots prevent soil erosion over winter.  Oats winterkill so no herbicides are needed.  Surface trash is minimal and will not interfere with conventional planting equipment.

(2)  RULE:  Keep Fields Green.  Photosynthesis is the process where plants use water, air and sunlight to make sugar.  More photosynthesis = more sugar = more plant growth = higher yields.  Bare fields are not profitable.  Smart farmers keep their soil covered with growing plants year-round.  Plant cash crops whenever possible.  Sow cover crops for mulch or fertilizer.  Seed weeds when there is no time or money to grow anything else.  The goal of biological farming is to produce the most possible organic matter per square foot.  Grow anything rather than leave soil bare.

The underlying principle of biological weed control is plant competition.  Keep the ground covered with growing crops year-round and weeds do not have a chance to get established.  Never leave the soil bare, not even for a single day.

For example:  Plant winter wheat into standing Dutch White Clover (Trifolium repens) using no-till equipment.  Next summer, harvest wheat then immediately (the same day) plant turnips into wheat stubble and clover living mulch.  Field stays green year-round.  Weeds cannot grow because they are constantly shaded by competing plants.

(3)  Sow Weed Seeds.  If you have tired, sick or dead ground, or no top soil, go to your nearest grain elevator and fill your truck with weed seeds.  These are usually free.  Some elevators charge a nominal fee for “elevator screenings” which contain many weed seeds.  Sow liberally, at least 40 pounds per acre.  Prepare for amazement.  Weeds are Nature’s Band-Aid, a fast growing cover crop evolved specifically to heal bare earth.  On steep slopes or mine reclamation sites, spread straw or spoiled hay mulch to protect germinating weeds.

(4)  Fertilize and Water Your Weeds.  Every time I say this, half my audience leaves the room.  No, I am not crazy.  Yes, I do know what I am talking about.  I farm without any government subsidies and each acre earns substantial profit.  It pays to feed and irrigate weeds (if possible).  Remember:  Weeds are a cover crop.  You want every field blanketed with a luxuriant jungle of weeds at least 6 feet high.  So water and fertilize as needed, and do not worry about what your neighbors say.  Farming is not about yields; farming is about the bottom line.  Weeds put money in your pocket.

(5)  Feed the Weeds and the Weeds will Feed Your Crops.  Weeds have enormous root systems in proportion to their stems and leaves.  Many weeds also have tap roots that plunge deep into the subsoil.  Translation:  Weeds are great at scavenging nutrients that would otherwise leach away.  Weeds have quick growth response to plant food so a little fertilizer goes a long way.  A few pounds of nitrogen create a vast jungle of vegetation that makes good mulch and fertilizer.  The average weed contains twice the nutrients of an equal weight of cow manure.  Broad leaf weeds rot quickly so fertilizer elements are rapidly recycled for crop use.  Plant crops and weeds together and yields often increase.  The reason is ecologic synergy = plant symbiosis.  Weeds both compete AND cooperate with neighboring plants.  Water and nutrients are shared so crops and weeds grow better.  I learned this lesson farming melons.  The best fruits came from the weediest fields.  So I started planting melons into weeds.  The weeds provided light shade and the melons followed weed roots down into moist subsoil.  Come drought and clean cultivated fields produced little or no crop.  Melons and weeds yielded fair crops.  Irrigated melons and weeds overfilled my trucks with fruit.  Think about this the next time you buy a drum of herbicide.

(6)  Use Weed Seed Meal Fertilizer.  How would you like to slash fertilizer costs?  Get weed seeds or screenings from your local elevator.  Grind them with a hammer mill or roller mill.  Broadcast 4 tons per acre or drop 10 pounds per 25 feet of row.  Unlike chemical fertilizers weed seed meal will not burn crop roots so you can hurl nutrients with wild abandon.  If you do not have any weed seeds, use any other waste seed like spoiled corn, brewer’s grain, or broken soy beans.

To use LIVE weed seeds as fertilizer broadcast seeds into a standing cover crop like Red Clover (Trifolium pratense).  Earthworms, ants, beetles and other critters eat the weed seeds.  Clover kills any weeds that germinate.  Caution:  Don’t try this unless you have a tall, aggressive cover crop that blankets the soil with dense shade.

(7)  RULE:  Apply Chemical Fertilizer Only to Growing Plants.  This rule covers all crops (including weeds) without exception.  It makes no sense to spread fertilizer on bare ground.  Chemical nutrients are wasted unless there are live roots waiting to absorb them.  For best results, synthetic fertilizers should be applied in small doses throughout the growing season, ideally diluted in irrigation water.  Feed growing crops only and well water stays pure = free of nitrates.

(8)  Good Farmers Grow Fungi.  The Fungi Grow the Crops.  Think of all the pipes, wires and roads needed to run a modern city.  Without these conduits life would be nearly impossible.  A corn field is no different.  Under the soil surface is a jungle of lifeforms, a whole zoo full of critters exceeding the combined population of the world’s largest cities.  And every one of these underground citizens depends on fungi for survival.  Millions of miles of microscopic fungi tie the underground world together.  Fungi are the interstate highway system of the soil ecology.  Water and nutrients are conveyed to hungry roots.  Plants share resources through fungal networks.  Many crops are so dependent on fungi that they cannot exist without these symbiotic micro-organisms.  Kill the fungi and the soil ecology collapses.  Yields plummet and fields become sick and barren.  Try to farm dead soil and you will spend vast sums for synthetic fertilizers, pesticides, and irrigation.  Today, this is called “conventional agriculture” and most growers lose money on every acre they plant.  There is a better way to farm.

Fungi like cool temperatures, a moist environment, plenty of air, and lots of organic matter.  Rip up the ground with plows and the fungal network is destroyed.  Soil temperatures spike, the earth is parched, a cyclone of oxygen rushes into the ground, and organic matter burns away in a firestorm of excess decomposition.  The result is like dropping a nuclear bomb:  Billions of critters die and the soil ecology is devastated.  Recovery takes years.

Sell your plows, disks and harrows — you don’t need them.  Grow weeds or other cover crops and leave the fungi alone.  Open the soil just enough to get seeds or transplants into the ground.  Further disturbance cuts profits and yields.

(9)  Till Your Fields with Earthworms.  My Grandfather taught me:  “Feed the worms and the worms will tend your crops”.  Common earthworms (Lumbricus terrestris) eat organic matter and excrete enough manure to grow 200 bushel corn = 11,200 pounds per acre.  They also burrow 6 feet into the subsoil.  My fields average 1 million worms per acre.  That’s about 23 worms per cubic foot = 1,200 miles of burrows per acre.  When thunderstorms drop 2 inches of rain per hour my neighbors’ fields wash away.  My soil stays in place.  When drought bakes the county, my corn yields over 100 bushels per acre (without fertilizer, herbicides, cultivation or irrigation).  How is this possible?  Plant clover and earthworm populations double.  I seed clover into weeds and the worms feast on the multi-species “salad bar”.  Mind you, this process does not occur overnight.  It took 12 to 15 years to wean my fields off synthetic nutrients.  That’s 4 to 5 generations of earthworms.  I used to borrow mountains of cash to buy farm chemicals.  Now I plant clover and have no debts.

(10)  Grow Your Own Fertilizer:  Conventional green manures are plowed into the soil.  A less invasive technology is called Chop-And-Drop.  Use a rotary mower, flail mower, bush hog, forage chopper, or common lawn mower to cut plants into small pieces that decompose quickly for rapid nutrient cycling.  Immediately sow or transplant another crop before weeds start germinating.  Alternatively, knock down cover crop with a roller-crimper or sickle-bar mower then plant through the mulch using no-till equipment.  For example, I sow Hairy Vetch = Winter Vetch = Vicia villosa in October then roller-crimp vines in May.  Vetch controls weeds and fixes sufficient nitrogen for 200 bushel corn or any other crop I want to grow.  Remember:  Chop plants into small pieces for fast-acting fertilizer.  Crimp or cut whole plants for mulch.  Finely chopped plants will NOT control weeds.

(11)  Use Mulch-In-Place.   Think of how much money you will save if you don’t have to buy herbicides or cultivate fields multiple times.  The savings in diesel fuel alone will pay for a 2-week vacation anywhere you care to go.  Let your neighbors plant seed in cold ground.  Be patient and give your weeds more time to grow.  Wait until the soil warms and weeds are at least 5 feet high.  Kill weed cover crop with a roller-crimper or sickle-bar mower then immediately seed or transplant through weed mulch with no-till equipment.  Mulch retards weed growth 4 to 6 weeks — just enough time for your crop to germinate and start covering the rows.  Once the crop canopy closes weeds are shaded and there is no more work until harvest.

There are many variations of Mulch-In-Place.  For example, use a forage chopper to deposit weed mulch into convenient windrows then transplant pumpkins or other fast-growing vine crops through the mulch.  Alternatively, mow strips through weed covered fields.  Transplant vine crops down mowed rows then roll out drip irrigation tape.  Use mowed weeds to mulch crops until plants are established.  Once vines begin to run they overwhelm weeds between rows.  Standing weeds protect vine crops from insect pests.

If you do not have weedy fields, sow winter rye = cereal rye = Secale cereale at 3 bushels per acre.  Roller crimp or sickle-bar mow when rye reaches 5 to 6 feet high or when grain reaches soft dough stage.  Immediately seed or transplant through rye mulch using no-till equipment.  Note:  Mulch-In-Place works with just about any cover crop that grows at least 5 feet high and produces 4 to 5 tons of mulch per acre.

Who needs Monsanto?  Grow mulch crops and never buy herbicide again.  Sell your spray rig and pay off farm debts.

(12)  Use Weeds to Control Insect Pests.  Plant weeds with your crops and you will never have to buy insecticides again.   Set 4 rows of tomatoes then leave a strip of weeds.  Seed 4 rows of sweet corn and leave another strip of weeds.  Plant 4 rows of sweet potatoes with a third strip of weeds.  Drill 4 rows of sunflowers and a fourth strip of weeds.   Alternate crops and weeds across fields and farms, following land contours.  Adjust strip widths to match planting and harvesting equipment.  Weeds provide food, shelter and alternate hosts for beneficial insects.  The good bugs eat the bad bugs.  Native weeds should cover at least 5% to 10% of every farm, even if you also grow insectary plants.  I learned this lesson the hard way.  I grew dozens of crops with small flowers especially to feed predatory and parasitic insects.  Biological control was only partly successful until I planted native weeds next to crops needing protection.  Close proximity is essential as many beneficial insects penetrate only 200 feet into a field over the course of a growing season.  Remember:  You need a mix of native weeds AND insectary plants to protect cash crops.  Maintain biological diversity and pests rarely cause economic damage.  I have not purchased insecticides (organic or synthetic) in 18 years.

(13)  Plant into Standing Weeds (Sow-And-Go).  This works best with fall planted winter grains like wheat, barley, and rye.  Seed directly into standing vegetation using no-till equipment.  (Standing weeds trap winter snow).  If desired, you can seed Dutch White Clover (Trifolium repens) at 8 to 12 pounds per acre with winter cereals.  The clover provides 90% to 95% weed control, about as good as glyphosate (Roundup).  Expect 60% to 70% of conventional yields without fertilizer or irrigation.  In a dry year you might lose your crop.

If you do not have no-till equipment, try surface seeding = Sow-And-Mow.  This works best with pelleted seed.  Broadcast seed into standing weeds then immediately roller-crimp or cut vegetation with a sickle-bar mower to cover and protect germinating grain.  Come back next summer and harvest your crop.

Alternatively, broadcast winter grain into standing weeds then mow with a rotary mower or flail mower to chop vegetation into small pieces.  Immediately till field with a rear-tine rototiller set to skim soil surface at 2 inches depth.  Make only 1 pass across field.  Your field will look ugly but will make a good crop = 40 bushels (2,400 pounds) of wheat per acre in cool, temperate climates with 40 or more inches of rainfall yearly.

If you have no farm machinery, try the ancient Roman practice of Stomp Seeding.  Fence field securely.  Broadcast seed into standing vegetation.  Turn in livestock (cattle, sheep or goats) until they eat about 1/2 of the vegetation and stomp the other half into mulch.  Livestock must be well crowded in order to make this work.  Allow each animal only enough space to turn around = use very high stocking densities = mob grazing.  For example, 600 to 1,200 cows per acre.  Directly forage is exhausted, move livestock to a new enclosure or fresh pasture.  If field is “tired”, “sick” or barren, feed livestock in their enclosure until they deposit 1/2 to 1 pound of manure per square foot = about 11 to 22 tons per acre, then move animals to another enclosure.

(14)  Plant into Living Mulches.  This is ideal for transplants or crops with large seeds.  For best results use no-till equipment and low-growing legumes like Dutch White Clover (Trifolium repens) or Crimson Clover (Trifolium incarnatum).  Seed Dutch White Clover at 8 to 12 pounds per acre, or Crimson Clover at 14 pounds per acre.  Seed or transplant directly cover crop reaches mature height of 6 inches for Dutch clover or 12 inches for Crimson clover.  It is good practice to mow clover before planting to give crops a head start.  Watch field carefully.  When the FIRST seedling emerges, immediately mow field as close to soil surface as possible.  If clover is especially vigorous, it may be necessary to mow again 2 weeks later.  Note:  If desired, you can grow corn (Zea mays) with tall-growing Red Clover (Trifolium pratense) using the same method.  No fertilizer, herbicides or cultivation are necessary if clover grows a full year before planting maize.

Planting into clover is a good way for farmers to learn how to work with weeds.  Clover is convenient to grow because its height is easily controlled.  Alternatively, you can make your own cover crop mix and use this as a substitute for naturally weedy fields.  Combine 2 cool season grasses + 2 cool season legumes + 2 cool season broad leaf plants + 2 warm season grasses + 2 warm season legumes + 2 warm season broad leaf plants + 2 root crops (tillage radish, stock beets, or turnips) = 14 species cover crop mix.  Plant at least 20 pounds per acre.  If desired, more species can be added.  For best economy, select cheap seed to keep costs below $40 per acre.

Remember:  All living mulches compete with their companion crops for water, light and nutrients.  For example, Dutch White Clover grows only 6 inches high but this is enough to shade the lower stems of wheat.  Plant Dutch clover with tall wheat varieties and yields are normal.  Seed Dutch clover with semi-dwarf or dwarf wheat and yields may drop 30% to 50%.  Use common sense when pairing cash crops with clover, weeds, or any other living mulch.  Combine tall varieties with low-growing cover crops.  Water and fertilize for both cash crop AND cover crop.  If necessary, retard or kill companion crop by mowing, mulching or roller-crimping.

(15)  Grow Crops and Animals Together.  2,000 years ago the Romans discovered that manure is more profitable than meat.  It pays to keep animals just for their manure.  Pastures grow better when grazed.  Crops grow better when dunged.  There is a significant difference in growth between plants fed manure or artificial nutrients.  No one has yet figured out why.  Drive a herd of cattle into high weeds (or a mixed species cover crop).  Let the cows graze until they have eaten 1/2 of the forage and stomped the rest.  Move herd to fresh pasture then immediately sow small grains or other crops with no-till equipment.  No herbicides, cultivation or chemical fertilizers required.

The cheapest way to keep livestock is to graze them on fresh, green grass.  Move herds to new pasture at least once daily and do not re-graze paddocks until forage has recovered.  This is called rotational grazing and eliminates the costs of building barns, making hay, and spreading manure.  If you don’t have tidy pastures seed mixed-species cover crops or graze native weeds.  What the cows don’t eat the goats will, and what the goats don’t like the sheep will relish.   Range chickens 3 or 4 days behind cows and the birds eat the fly maggots.  Nothing goes to waste and meadows stay clean and sanitary.

Not all weeds are good to have around.  When weeds get out of control there are 2 easy ways to recover ecologic balance:  (1)  Grow cover crops in series, or  (2)  Graze with mixed livestock.  Cover crops overwhelm weeds by shade and competition.  Mixed livestock eats everything in sight.  Either way, problem weeds are eliminated and crop rotation can proceed normally.

(15)  Think Unconventionally.  If everyone around you grows corn, plant something else.  If everyone says you have to spray, don’t.  Conventional wisdom is often just plain wrong.  Do not be afraid to experiment.  Every year I reserve about 2% of my land for agricultural research.  I learned to farm by doing the opposite of what the “Experts” advised.  Along the way I have enjoyed amazing success and spectacular failure.  Both are equally instructive.  Monsanto says weeds are bad and should be eradicated.  I think differently.  For example, in my garden (a jungle of weeds), I thin Bull Thistles (Cirsium vulgare) until they stand about 1 foot apart, then I plant 1 pole bean seed per thistle plant.  The beans climb the thistles and I do not have to cut poles.  My spray-by-the-calendar neighbors told me to cut the weeds or mulch them into oblivion.  Instead, I conducted a paired comparison of 100 beans on thistles with 100 beans on poles.  Thistles beat poles by a slight margin, 3.55% over a 5-year trial.  This is only one of many examples of symbiosis between weeds and crops.  Widely spaced weeds often increase crop yields.  I don’t recommend planting beans and thistles on a commercial scale, but neither do I insist on weed-free fields.  Weeds spaced 3 feet apart (about 5,000 weeds per acre) no longer bother me.  The tomatoes don’t seem to mind and I don’t have to spray for hornworms.  Learn from nature or buy from Monsanto.

Related Publications:  Crop Rotation Primer; Biblical Agronomy; The Twelve Apostles; Weed Seed Meal Fertilizer; Trash Farming; No-Till Hungarian Stock Squash; Planting Maize with Living Mulches; Living Mulches for Weed Control; Pelleted Seed Primer; Crops Among the Weeds; Forage Maize for Soil Improvement; and Rototiller Primer.

Would You Like To Know More?  Please visit:  http://www.worldagriculturesolutions.com  — or —  send your questions to:  Eric Koperek, World Agriculture Solutions, 413 Cedar Drive, Moon Township, Pennsylvania, 15108 United States of America  — or —  send an e-mail to:  worldagriculturesolutions@gmail.com

About the Author:  Mr. Koperek is a plant breeder who farms in Pennsylvania during summer and Florida over winter.  (Growing 2 generations yearly speeds development of new crop varieties).

TRASH FARMING

“You got it plum backwards:  You’re supposed to KILL the weeds and GROW the crops”.  Contrarian that I am, I plant weeds and let the crops fend for themselves.

My neighbors call it weed farming or trash farming.  (Less charitable folks say I’m lazy or just plain mental).  I call what I do common sense agronomy.  Planting in weeds saves lots of money.  You should try it.

Most farmers think weeds are enemies that should be exterminated by any means possible.  I take a more balanced view:  Weeds are valuable agricultural resources if properly managed = you have to get off your tractor long enough to think of weeds as an ally.  My spray-by-the-calendar neighbors don’t agree with me but my weedy fields are highly profitable. Their farms are up for auction.

A weed is a plant growing where it is not wanted.  The key to intelligent agriculture is to grow weeds where they are needed.  Here are some ways that weeds can help fill your bank account:

–>     WEEDS ARE GOOD ORGANIC FERTILIZER.     I ran a lawnmower across a typical meadow (8 grasses + 23 broad leaf weeds = 31 species) and sent the clippings off for analysis:  1.00% Nitrogen : 0.27% Phosphorous : 1.10% Potassium by weight = 20 pounds Nitrogen + 5.4 pounds Phosphorous + 22 pounds Potassium per ton.

Compare this with cow manure from my neighbor’s dairy:  0.5% Nitrogen : 0.15% Phosphorous : 0.40% Potassium by weight = 10 pounds Nitrogen + 3 pounds Phosphorous + 8 pounds Potassium per ton.

Fresh green weeds contain approximately double the nutrients of dairy cow manure.  A dense field of weeds 3 feet high yields about 2.5 tons of green manure (stems and leaves) ~ 50 pounds Nitrogen + 13.5 pounds Phosphorous + 55 pounds Potassium per acre.  Green weeds rot fast so most of these nutrients are quickly available to crop plants.

How to Green Manure a Field:     First, cut weeds with a flail, rotary, or sickle bar mower, or use a forage chopper.  Next, use a rear-mounted rototiller, moldboard or disk plow to till the chopped foliage into the soil.  RULE:  Always mow before plowing!  Chopped plants rot faster so crop roots absorb nutrients sooner.  Last, seed or plant field immediately = the same day.  Never leave the soil bare, not even for a single day.  Naked soil is wasted dirt.  Keep the ground covered with growing plants at all times.

Chop-And-Drop:     How do you “green manure” a no-till field?  Answer:  Mow the cover crop as close to the soil surface as possible and leave the chopped vegetation where it falls.  Use a rotary mower, flail mower, forage chopper, or common lawnmower if you want the cover crop to decompose quickly (to feed a following crop or clear a field for planting).  Use a sickle bar mower or roller-crimper for Mulch-In-Place planting.  Timing is important:  To kill a cover crop mow when plants start flowering or begin setting seeds.  Late planted annual cover crops can be left standing until killed by frost; standing vegetation traps snow over winter.  Fall oats are a good crop for this purpose.  Winter killed oats protect soil but do not obstruct spring planting with conventional equipment.

To green manure a field without machinery, use animals to stomp the cover crop.  Erect temporary fencing and “Mob Graze” the field.  Animals should be “well crowded” together.  Ideal stocking density = 680 to 1,210 Animal Units per acre.  (1 Animal Unit = 1,000 pounds live weight).  For example:  680 beef cattle per acre = 1 cow for every 8 x 8 feet = 64 square feet per animal.  1,210 beef cattle per acre = 1 cow for every 6 x 6 feet = 36 square feet per animal.  Keep animals confined until they eat the top 1/3 of the foliage then move herd to fresh pasture.  Plant stomped cover crop the same day with no=till equipment.  Alternatively, broadcast grain into standing cover crop then immediately mob graze field.  This is an old Roman agronomic practice called stomp seeding.

–>     WEEDS ARE HIGH QUALITY MULCH.     Fight fire with fire.  Use weeds to smother weeds.  An 8-inch blanket of cut weed mulch provides 95% or better weed control for 6 to 8 weeks during the growing season.  That is all the time you need to get your crop up and growing.  Once your plants are well established any weeds that poke above the crop canopy won’t matter.  The crop itself suppresses most weeds.  Peek under the leaves and you will see little weeds lurking in the shade.  These tiny plants lost the competition for sunlight.  As long as your crop continues to grow, your fields will remain mostly weed free.

Mulch-In-Place:     Find the weediest field possible.  Dense, luxuriant, rank growth 6 feet high is best = about 4 tons of biomass (stems and leaves) per acre.  Cut weeds with a sickle bar mower or flatten with a roller-crimper.  Seed or transplant directly through the mulch with no-till equipment, or sow by hand.  If desired, you can immediately top seed field with a low growing nitrogen fixing legume like Dutch White Clover (Trifolium repens), Crimson Clover (Trifolium incarnatum), or Sub Clover (Trifolium subterraneum).  The tiny clover seeds fill any holes in the mulch and provide useful biodiversity.  (If you don’t have a weedy field, sow Winter Rye = Secale cereale at 3 bushels per acre then mow or roll when 6 feet high or when seeds reach the soft dough stage.  Cereal rye grows fast like a weed and yields 4 to 5 tons = 8,000 to 10,000 pounds of long straw mulch per acre.  Alternatively, seed a high biomass crop like Sudan Grass = Sorghum sudanense or Forage Maize = Zea mays).

Lawnmower Farming:     You can run a 25 acre ~ 10 hectare commercial vegetable farm with nothing other than a common lawnmower.  (For larger areas use a riding lawnmower = lawn tractor).  Find the weediest field possible.  Mow a strip where you want to plant your crop.  Roll irrigation tape down the row.  (The idea is to water the crop rather than the entire field).  Set your transplants then mulch heavily with cut weeds.  Apply a circle or collar of green mulch 1 foot = 12 inches thick around each plant.  This is a form of sheet composting = the weeds rot and release nutrients to feed your crop.  (It’s ok to use synthetic fertilizers but these are expensive.  A 40 pound bag of 10-10-10 = 10% Nitrogen + 10% Phosphorous + 10% Potassium costs $17.12 at my local farm store.  Why spend 43 cents per pound for chemical fertilizer when weeds cost nothing)?

Weed mulches protect and feed earthworms = Lumbricus terrestris.  Earthworm casts = manure fertilize the soil.  Weed fields fallowed = untilled for 7 years typically have 1 ton = 1 million earthworms per acre ~ 23 earthworms per cubic foot of topsoil.  1 million earthworms per acre produce 2,000 pounds = 1 ton of worm casts each DAY during the growing season.  That is an enormous amount of free organic fertilizer ~ 150 to 180 TONS per acre of worm manure in a typical 5 to 6 month growing season ~ 6 to 8 pounds of worm casts per square foot (distributed from the surface through the entire soil column about 6 feet deep).

Earthworms also biologically till the soil so air and water penetrate deep into the subsoil.  Plant roots follow worm borrows 5 to 6 feet underground where the soil stays moist = crops are nearly drought proof.  (My weed fields average 902 MILES of vertical earthworm burrows per acre).  A hundred-year rainstorm (2-inches per hour) falling on a fallow weed field has almost no runoff = zero soil erosion.  Rain sinks into the land like water through a colander.  Underground water keeps my crops growing while my neighbors’ fields wilt.

Earthworm populations are directly proportional to the amount of available food = organic matter.  Apply more mulch and more worms will come.  Space rows widely so you have sufficient weeds to cut for mulch.  (On very large farms use a forage chopper to deposit chopped weeds into convenient windrows.  Set transplants down the windrows).  RULE:  Cut weeds only to clear rows for planting or to harvest for mulch.  Leave remaining weeds standing to maintain wide environmental diversity.

If you don’t have any weedy fields, plant mixed species cover crops.  The goal is to imitate the broad ecological diversity of a naturally weedy field.  Include 50% legume seed in the mix because earthworms need protein in their diet.  Earthworm populations double on fields of clover versus fields of grass.  More legumes = more earthworms = more free fertilizer = more money in your bank account.

If you can’t afford cover crop seed go to the nearest grain elevator and ask for elevator screenings.  These are usually free or cheap and contain many weed seeds.  Haul as many tons as practical; you will need every pound of weed seed obtainable.  Sow weeds generously = with wild abandon.  Your neighbors will think you daft, but it really does pay to plant weeds (especially on poor, eroded, or barren fields).  Run the remaining elevator screenings through a roller mill to make weed seed meal.  Weed meal is high quality organic fertilizer; use it just like cottonseed meal or other expensive soil amendment.  Apply weed seed meal liberally because it won’t burn plant roots.

Once weed fields are planted they require little or no attention = the crops grow themselves.  Mulch protects young transplants for the first 3 to 6 weeks until they put down roots.  Once crops are well established they will outgrow or overwhelm most weeds.  This is especially true for vigorous plants like tomatoes, peppers, and vine crops:  Pumpkins, squash, gourds, sweet potatoes, cucumbers, and melons.  Vine crops tolerate light shade and easily climb over weeds 5 to 6 feet tall.  I always get my best melons from the weediest fields.  On rare occasions weeds may grow too densely around a pepper or tomato plant.  Thin offending weeds with pruning shears.

Weed Seed Meal:     Seeds of most plants make good fertilizer.  The trick is to mill = grind seeds into a coarse meal or flour so they do not sprout.  If weed seeds are not available, substitute any type of waste or spoiled grain, for example, wet or dry brewer’s grains.  There is no standard analysis for weed seed meal; nutrient content varies depending on species and proportion which change by locality and season.  It is good practice to test weed seed samples yearly so fertilizer application rates can be adjusted as needed.  Below are some average nitrogen (N), phosphorous (P), and potassium (K) values for rough calculations.  Note:  lb = pound.  1 pound = 0.454 kilogram.  1 American ton = 2,000 pounds = 908 kilograms = 0.908 metric ton.  1 metric ton = 1 megagram = 1,000 kilograms = 1,000,000 grams = 2,200 pounds = 1.1 American tons.

Wheat, Broken (Kansas 2011):     2.00% N : 0.85% P : 0.50% K = 40 lb N + 17 lb P + 10 lb K per ton

Weed Seed Meal (Saskatchewan 2015):     3.02% N : 0.56% P : 0.77% K = 60 lb N + 11 lb P + 15 lb K per ton

Weed Seed Meal (Hungary 2013):  2.7% N : 0.90% P : 0.90% K = 54 lb N + 18 lb P + 18 lb K per ton

Rice, White Broken (California 2016):  1.00% N : 0.21% P : 0.27% K = 20 lb N + 4 lb P + 0 lb K per ton

Rice Hulls = Husks (Philippines 2014):  1.9% N : 0.48% P : 0.81% K = 38 lb N + 9 lb P + 18 lb K per ton

Rice, Brown (California 2016):  1% N : 0.48% P : 0.32% K = 20 lb N + 9 lb P + 6 lb K per ton

Rice Bran (India 2015):  4.00% N : 3.00% P : 1.00% K = 80 lb N + 60 lb P + 20 lb K per ton

Oats, Broken (New York 2010):  2.00% N : 0.80% P : 0.60% K = 40 lb N + 16 lb P + 12 lb K per ton

Flaxseed = Linseed Meal (Manitoba 2008):  5.66% N : 0.87% P : 1.24% K = 113 lb N + 17 lb P + 24 lb K per ton

Dent Corn, Spoiled (Maryland 2014):     1.65% N : 0.65% P : 0.40% K = 33 lb N + 13 lb P + 8 lb K per ton

Cowpeas, Broken (California 2014):  3.10% N : 1.00% P : 1.20% K = 62 lb N + 20 lb P + 24 lb K per ton

Cotton Seed, Whole (USDA 2015):  3.14% N : 1.25% P : 1.15% K = 63 lb N + 25 lb P + 23 lb K per ton

Cotton Seed, Pressed (USDA 2015):  4.51% N : 0.64% P : 1.25% K = 90 lb N + 12 lb P + 2b lb K per ton

Cotton Seed Meal (Egypt 2012):  6.6% N : 1.67% P : 1.55% K = 132 lb N + 33 lb P +31 lb K per ton

Castor Beans, Pressed (Egypt 2012):  5.5% N : 2.25% P : 1.125% K = 110 lb N + 45 lb P + 22 lb K per ton

Brewer’s Grain, Wet (Pennsylvania 2012):  0.90% N : 0.50% P : 0.05% K = 18 lb N + 10 lb P + 1 lb K per ton

Brewer’s Grain Dry (Pennsylvania 2012):  4.53% N : 0.47% P 0.24% K = 90 lb N + 9 lb P + 4 lb K per ton

Beans, Soup Broken (New York 1988):  4.0% N : 1.20% P : 1.30% K = 80 lb N + 24 lb P +26 lb K per ton

Barley, Spoiled (Manitoba 2011):  1.75% N : 0.75% P : 0.50% K = 35 lb N + 15 lb P + 10 lb K per ton

For slow release fertilizer mill weed seeds into coarse flakes or meal.  Grind weed seeds into powder for fast acting fertilizer.

Calculate application rates according to soil test recommendation for desired crop.  Minimum application rate is 1 ton = 2,000 pounds per acre ~ 5 pounds or 1 gallon per 100 square feet ~ 2 Tablespoons or 2/3 ounce per square foot.  Apply 1 pound of weed seed meal for every 25 feet of row or trench.  Mix 1/2 to 1 cup in each bushel (8 gallons) of potting soil.  To fertilize trees and bushes, apply 1 pound or 1 1/4 quarts of weed seed meal for every inch of trunk or stem diameter.  Spread meal from trunk or stem to drip line = farthest extent of branches.

Average density of weed seed meal = 0.3125 to 0.40 scale ounce per Tablespoon ~ 5 to 6.5 scale ounces per cup ~ 20 to 25.6 scale ounces per quart ~ 80 to 102.4 scale ounces per gallon ~ 5 pounds to 6 pounds 6.4 ounces per gallon ~ 40 to 51 pounds per bushel (8 gallons).  1 ton = 2,000 pounds weed seed meal = 40 to 50 bushels.

For example:  200 bushel per acre corn crop requires 200 pounds of nitrogen per acre.  200 pounds N divided by 54 pounds of nitrogen per ton of weed seed meal = 3.70 ~ 4 tons of weed seed meal needed per acre of corn.  Weed seed meal can be tilled into the earth by conventional plowing, broadcast on soil surface, side banded down rows, or drilled into furrows or trenches.

For feeding earthworms broadcast weed seed meal (1 ton per acre or 2 Tablespoons per square foot) on soil surface.  Reapply throughout the growing season when meal is no longer visible.

–>     WEEDS PROVIDE FREE BIOLOGICAL INSECT CONTROL.     I used to work for a cannery company.  I have dreadful memories of being bombed by crop dusters.  I would run for my truck, slam the door and stomp on the gas pedal.  The toxic mist really was that lethal.  Any human caught in the open would spend weeks in hospital and years twitching oddly.  Of course, the cabbage loopers took only 2 or 3 seasons to develop immunity to the toxin.  Then it was replaced with something even more poisonous.  Never again!  I refuse to become yet another ghastly statistic.  Just as stubbornly, I won’t buy something I don’t need.  Farming is all about cheap.  Margins are slim (especially for commodity crops) so a jug of synthetic chemical per acre can make all the difference between hanging-on-by-our-fingernails profit and loss of the family homestead.  Consequently, I cross all agricultural chemicals off my shopping list.  I’m not a “tree hugger” just ruthlessly frugal.  My family has farmed the same land for over 800 years.  I’m not going to be the one who fails.

Pests Be Gone!      Weeds are the poor man’s wildflowers.  Sow weeds just as you would wildflowers to provide food, shelter, and alternate hosts for beneficial predatory and parasitic insects.  For best results, reserve at least 5% of cropland for weeds.  Seed every 20th row with weeds.  Plant a strip of weeds around each field, vineyard, and orchard.  The trick to biological insect control is to grow weeds in close proximity to crops needing protection.  Serious insect problems usually mean a farm does not have enough wild plants.  Spatial orientation is important:  Weeds on one side of a farm will not protect tomatoes on the opposite side.  Plant tomatoes and weeds together = few hornworms.

Strip Cropping:     Plant crops in long narrow strips 4 to 16 rows wide (depending on the size of planting and harvesting equipment).  Long fields increase mechanical efficiency = fewer turns.  Try to keep strips as narrow as mechanically practical.  Narrow strips maximize biological edge effects and increase light penetration into crop canopy.  More edges = less pests.  More sunlight = more photosynthesis = higher yields.  Run strips across fields and farms following land contours.  Plant adjacent strips with unrelated crops to increase biological diversity = more food and shelter for beneficial insects.  If weed seed is unavailable or wildflowers too costly, plant mixed species cover crops to simulate weed populations.  Thomas Jefferson used buckwheat (Fagopyrum esculentum), turnips (Brassica rapa subspecies rapa), and winter vetch (Vicia villosa) = small flowered plants ideal for predators and parasites with tiny mouth parts.  A diligent program of crop rotation, strip planting, and weed farming usually keeps pest populations from rising to harmful levels.

–>     WEEDS ARE POTENT INSECTICIDES.     Over millions of years weeds have evolved elaborate chemical defenses against bugs.  Most weeds have only 1 or 2 minor pests; many wild plants are immune to just about everything.  When bugs get out of hand most infestations can be controlled by spraying with weed tea = a simple infusion of fresh weeds in water.  Find any weeds not bothered by the pest needing control.  Collect a large quantity of plants equal to the volume of water needed for spraying.  Chop weeds with a shredder, hydro-mill, or household blender.  Alternatively, crush weeds in a roller mill or laundry wringer.  Soak milled weeds in water at least 1 hour but not more than 8 hours or mixture may ferment.  Strain before use then add a commercial surfactant so insecticide spreads over and sticks to crop leaves.

If necessary, dilute weed tea concentrate with clear water to make up spray tank volume.  One application is usually enough to control most pests.  If infestation continues spray again or increase insecticide concentration by brewing equal weights of weeds and water (1 pound of weeds for each pint of water).  The forests around me abound with wild plants, especially ferns.  Nothing eats a fern.  Fern tea will kill or deter any bug known to modern agriculture.  Many common farm and garden weeds are equally distasteful or toxic.

–>     WEEDS ARE GOOD NURSE CROPS.     Weeds moderate farm microclimates by reducing wind speed, increasing humidity, shading soil, drawing water from subsoil depths and sharing moisture with shallow-rooted plants.  In times of drought, crops grown in weeds often out yield plants in cultivated weed-free fields.  Even dead weeds are useful; they protect topsoil from wind and water erosion, and their decomposing tissues feed soil organisms.

Sow-And-Go:     Drill or broadcast small grains into standing vegetation.  For best results sow tall varieties as these compete better against weeds.  The best time to plant is in the dry or cold season when most weeds and grasses are dead, dormant, or growing slowly.  Pelleted seed greatly increases germination and seedling survival.  If desired, you can sow Dutch White Clover (Trifolium repens) along with the grain.  With plentiful water, expect yields 60% to 70% of conventionally planted cereals.  If rains are poor expect little or no harvest.

Sow-and-Go agronomy works best with winter cereals.  Here in Butler County, Pennsylvania (40.8606 degrees North Latitude, 79.8947 degrees West Longitude)  sow-and-go winter wheat yields 24 to 28 bushels = 1,440 to 1,680 pounds per acre.  (Conventionally planted wheat yields 40 bushels = 2,400 pounds per acre).  My fields look awful but they produce enough grain to feed my family and the entire parish.  More importantly, out-of-pocket costs are minimal so profits are high.  Sow-and-Go cereals reduce economic risk.  Consequently, growing grain in weeds usually makes more money than planting cereal crops in cultivated or herbicide-sprayed fields.

–>     WEEDS ARE GOOD BEE FORAGE.     A jar labeled “wildflower honey” means “made from weeds”.  Very few apiaries plant flowers for their bees.  Most commercial honey in the United States comes from hives that are trucked across the country to pollinate almonds, blueberries, and oranges.  These bees are fed sugar syrup to keep them alive so if you want “real” honey buy from small, local apiaries or keep your own bees.

Honeybees feed on small flowers because they have short tongues.  Most weeds are ideal bee forage because they produce many small flowers throughout the growing season.

For a hungry bee the average plow-and-spray farm is a “green desert”.  Vast monoculture fields of corn and wheat do not provide nectar = starving hives.  To maintain healthy bee colonies plant weeds and wildflowers throughout the farm or sow small-flowered crops like Anise (Pimpinella anisum), Caraway (Carum carvi), Coriander (Coriandrum sativum), Dill (Anethum graveolens), and Fennel (Foeniculum vulgare).   Seed every available space as honey production is directly dependent on flower numbers.  More blossoms = more pollen and nectar = more bees = more honey.  Alternatively, plant mixed species cover crops to replace the bountiful blossoms of naturally weedy fields.  For example, seed orchards with buckwheat (Fagopyrum esculentum), hairy vetch (Vicia villosa), and turnips (Brassica rapa subspecies rapa) to feed bees and other beneficial insects.

Think before mowing!     Do not clip entire hay fields at once.  Leave 5% to 10% of each field un-harvested so bees have something to eat.  Whenever practical, divide fields into blocks or strips then harvest sequentially so beneficial insects can move to undisturbed areas.  Similarly, mow orchards only before harvest; let weeds, wildflowers, and cover crops grow without disturbance.  More flowers = fewer insect pests.

Plant thoughtfully.     Bees will fly 5 miles to gather nectar but long trips are inefficient = less honey.  Would you like to walk 5 miles to get your dinner?  Think like a bee and sow flowers as close to hives and crops as practical.  Integrate crops and weeds whenever possible.  For example, alternate strips of tomatoes and weeds.  Result:  Save $400 per acre for insecticides.

There is no such thing as a free lunch.     Biology can replace synthetic chemicals but there is an economic trade-off:  At least 5% of a farm must be covered in weeds.  This is the same as losing 5% of your corn crop and that costs money.  If this is not acceptable then plant wildflowers or any other small-flowered crop that you can harvest and sell the seed.  You can have bees and a profitable farm at the same time.

“Weed Farming” is an essential part of the New Green Revolution where biology replaces what is normally done by diesel tractors and synthetic chemicals.  This is leading edge agronomy = what our Great-Great-Grandfathers used to do.  Every farmer should reserve a few acres to experiment with this rediscovered technology.  Growing crops in weeds is profitable — provided farmers exercise careful stewardship.  For best results manage weeds just like a living mulch or mixed species cover crop.  Always remember that there are 2 crops growing on the same land at the same time — the weed crop and the cash crop.  Each requires equal care or both crops may fail.

RELATED PUBLICATIONS:     Crop Rotation Primer; Biblical Agronomy; The Twelve Apostles; Managing Weeds as Cover Crops; Weed Seed Meal Fertilizer; No-Till Hungarian Stock Squash; Planting Maize with Living Mulches; Living Mulches for Weed Control; Organic Herbicides; Pelleted Seed Primer; Crops Among the Weeds; Forage Maize for Soil Improvement; Forage Radish Primer; and Rototiller Primer.

WOULD YOU LIKE TO KNOW MORE?     Contact the Author directly if you have any questions or need additional information on growing crops and weeds together.

Please visit:  http://www.worldagriculturesolutions.com  — or —  send your questions to:  Eric Koperek, Editor, World Agriculture Solutions, 413 Cedar Drive, Moon Township, Pennsylvania, 15108 United States of America  — or —  send an e-mail to:  Eric Koperek = worldagriculturesolutions@gmail.com

ABOUT THE AUTHOR:     Mr. Koperek is a plant breeder who farms in Pennsylvania during summer and Florida over winter.  (Growing 2 generations each year speeds development of new crop varieties).

EARTHWORM PRIMER

“Biological Agriculture” relies on earthworms and other soil critters to do what plows and synthetic chemicals do in conventional agronomic systems.  Follow the advice below to encourage worm populations in your fields:

–>     There are many species of earthworms around the world.  The most common agricultural species in North America and Europe are the Common Garden Earthworm = Nightcrawler = Lumbricus terrestris, and the Manure Worm = Redworm = Eisenia foetida.  These are the most prevalent species sold by worm hatcheries for fish bait and farming.

–>     Nightcrawlers dig vertical burrows deep into the subsoil.  At night the worms rise to the soil surface to feed = they drag bits and pieces of leaves and other organic matter down into their tunnels.  Walk through a field at night with a flashlight and you will see many earthworms.

–>     Manure worms live close to the soil surface and do not dig vertical burrows.  Redworms are specialized to eat manure and so they are rarely seen except around the base of compost piles or in fields where many animals graze.

–>     31 nightcrawlers or manure worms per ounce; 500 worms per pound; 1,000,000 worms = 2,000 pounds = 1 ton.  1 average earthworm (Lumbricus terrestris) or manure worm (Eisenia foetida) from a commercial hatchery weighs 0.002 pound = 0.032 ounce = 0.9072 gram.

–>     Active, adult earthworms (Lumbricus terrestris) eat their body weight in soil and organic matter daily.  Sluggish worms, immature worms, and worms of other species may eat only 10% to 30% of their body weight each day.  1,000,000 common earthworms per acre (about 23 worms per square foot of topsoil 12 inches deep) = 1 ton of earthworm castings = worm manure DAILY during the growing season.

–>     Usage Note:  1 earthworm cast, 2 earthworm casts, many earthworm castings.

–>     Average daily worm cast is about 0.90 gram although weight of surface casts is considerably greater and varies widely.  Average surface cast weight is approximately 10 to 14 grams or about 0.30 to 0.50 ounce.  Surface worm cast weight ranges up to about 2 ounces in temperate climates and considerably more in tropical areas, depending on worm species, soil type, and available food.  For example, 1 average adult earthworm (2 to 3 years old) living in a bed of compost in a tropical climate can produce 10 pounds = 4.54 kilograms of castings annually ~ 12.4 grams ~ 0.43 ounce of castings daily.

–>     Average surface cast volume is approximately 1 Tablespoon = 15 milliliters (plus or minus 7 milliliters).

— >     Earthworms are most active in early spring and mid fall when weather is cool and moist.  Ideal soil temperature = 65 degrees Fahrenheit.  Earthworms are less active during hot, dry summer months.  Earthworms rise to the surface to feed at night then sound to lower soil depths each morning when temperatures rise.

–>     Do not plow in spring or fall if practical as this kills many worms.  Do not plow, cultivate, or spray in early evening, after dark, or early in the morning as this kills many worms.  The best time to till, cultivate, or spray is in the afternoon when temperatures are highest and worms have retreated to cooler soil depths.

–>     Keep fields planted with cover crops in spring and fall to feed worms.  They need much food at this time.

–>     Don’t leave soil bare over winter.  Protect winter fields with an insulating blanket of crop residues, mulch, or cover crops.  1 or 2 inches of organic matter can double earthworm populations.

–>     Earthworm populations increase in direct proportion to the amount of organic matter on the soil surface = leaves, twigs, straw, et cetera.  More cover = more protection & more food = higher worm populations.  Keep the soil mulched or covered with growing plants at all times.  2 inches of mulch double worm populations compared to cornfields where whole stalks are left on soil surface.

–>     Baby earthworms when they hatch from their cocoons = egg cases are very small, only 1/2 to 3/4 inch long.  Earthworms are extremely vulnerable when first hatched.  Do not plow, cultivate, or spray when worms are hatching.

–>     Earthworms need protein in their diet.  Worm populations double on legume fields compared to grass fields.  Earthworms especially favor clovers, particularly white clover.  Include legumes in field rotations, pastures & hay fields, cover crop mixes, and living mulches.

–>     Earthworms breed and grow very slowly.  Baby worms take 2 to 3 years to mature.  A plentiful, steady food supply is essential to support maximum breeding and population growth.  More organic matter (roots, stems, leaves) = more food = faster population growth = more worms.

–>     Earthworms do not spread rapidly.  A worm colony might spread 3 feet in a year.  That’s as fast as earthworms go.  To “seed” worms drop 6 nightcrawlers every 30 feet then immediately cover with a generous heap of mulch, compost, or manure = whatever worms are used to eating.  It takes at least 10 years for worm colonies spaced 30 feet apart to spread across an acre-sized field.  1 acre = 43,560 square feet = 4,840 square yards ~ 0.404 hectare.

–>     Adult worms are particularly sensitive to dietary changes.  For example, worms raised in hatcheries die if placed in corn fields because they have problems adapting to new, strange foods.

–>     Do not try to seed Manure Worms = Eisenia foetida in crop fields.  The manure worms will die because they are not adapted to this environment.  Use only nightcrawlers = Lumbricus terrestris for agricultural development, mine reclamation, terraforming, reforestation, and similar environmental restoration projects.

–>     If you need to seed worms, talk to the hatchery and ask for their best deal on earthworm cocoons.  Baby worms adapt quickly to any food available.  Mix egg cases gently with screened peat moss, corn meal, sifted compost, or similar carrier then “plant” with a common grain drill.

–>     Switching from conventional tillage to no-till does not happen overnight.  Conversion speed is entirely dependent on earthworm food supplies.  There is no solution for worms’ low natural reproduction rates.  Buying more worms or egg cases won’t make the process go any faster.  You can’t fix this problem by throwing money at it.  Patience is required.  You won’t see substantial improvements in soil structure or fertility until the fourth or fifth year of no-till ~ 2 earthworm generations.  Dramatic differences become smack-upside-the-head obvious by the 7th or 8th year without plows ~ 4 worm generations.  Conversion speed is controlled by how many tons of organic matter are added to each field.  Start looking at crops in terms of their biomass production.  This game is all about weight.  The farmer with the most tons wins!

–>     Tillage kills earthworms.  Loses depend on plow type, tillage depth, and time.  Chisel plows are the most destructive, disk plows slightly less so.  Old fashioned moldboard plows are the least destructive of all conventional tillage implements.  Chisel plows kill 3 times as many earthworms as moldboard plows.

–>     RULE:  Less tillage is better than more tillage.  Shallow tillage is better than deep tillage.  “Warm tillage” (afternoon & summer) is better than “cool tillage” (spring, fall, morning, evening, and night).

–>     Till just enough to get your crop in the ground.  Disturb the soil as little as possible.  All you need is a small hole to set transplants or a narrow slot to sow seeds.  It is rarely necessary to till more than 2 inches deep (unless you are planting potatoes).

–>     No-Till is better than strip till which is better than ridge till which is better than whole surface conventional plowing.

–>     Rear mounted rototillers are ideal tools for shallow tillage.  For example:  Broadcast winter wheat and Dutch White Clover = Trifolium repens into standing weeds or cover crop.  Mow vegetation then rototill only 2 inches deep to get seeds into the ground.  Irrigate to firm seedbed or wait for rain.  Your field will look rough and trashy but the litter is necessary to prevent wind and water erosion.  Some seeds will be buried too deep, others too shallow, but enough will germinate and survive to produce a good crop.  If soil is too wet, omit rototilling.  You will still make a profitable crop.  Small seeds do not absolutely need to buried in earth.  Cut weeds or nurse crop will cover and protect seed.

–>     Earthworms do not “like” to eat maize leaves and they especially dislike whole corn stalks and cobs.  Continuous corn = planting maize in the same field year after year reduces earthworm populations to minimal levels.  For best results use a stalk chopper or forage chopper to shred dead corn plants so they decompose faster.  Plant maize into a living mulch of Red Clover = Trifolium pratense or other nitrogen fixing legume.  Follow corn with fall turnips or other cover crop to feed and protect worms over winter.  Rotate corn with legumes or other broad leaf cover crops.  Do not follow maize with a grass or cereal crop unless also planted with a companion crop of clover or other legume.  Broad ecological diversity favors large earthworms populations.  Translation:  Worms like a varied, balanced diet.

Example:     Plant forage maize at 80,000 to 100,000 seeds per acre to kill weeds.  Flatten with a roller-crimper or cut with a sickle bar mower after 70 days (18 tons biomass) or approximately 110 days (30 tons biomass per acre).  This is called Mulch-In-Place.  Direct seed pumpkins or squash through the corn mulch with a no-till seeder.  At the same time, broadcast Dutch White Clover = Trifolium repens or other low growing legume over field.  Clover fills any gaps in the mulch and provides earthworms with a “balanced diet”.  Result:  95% or better weed control and few insect pests.  Mulch keeps fruits clean so farmer gets premium prices for his pumpkins.

Note:     Mulch-In-Place is used to grow crops without herbicides.  Popular mulch crops include Winter Rye = Cereal Rye = Secale cereale in temperate climates and Sunn Hemp = Crotalaria juncea in tropical and subtropical climates.

–>     Adult earthworms can live 9 or more years in captivity.  How long worms live in the wild is unknown.

–>     Worms constantly maintain their burrows which often extend 5 to 6 feet into the subsoil.  About the diameter of a pencil, worm holes are essential for aeration and drainage of natural soils.  Fields with populations of 1 million earthworms per acre typically contain approximately 900 to 1,200 MILES of tunnels.  These tubes are lined with “earthworm cement”, a natural glue that keeps tunnels open many years after resident earthworms have died.  Plant roots follow earthworm burrows deep into the subsoil where moisture levels are relatively constant.  This is why crops grown in biologically managed fields have considerable drought resistance.  (Crop roots also follow weed roots into the subsoil, especially weeds with deep taproots.  This is why melons grown in weeds make a crop in dry years while clean cultivated vines shrivel and die).

–>     If agricultural wastes are plentiful earthworms can be fed just like crop plants on an irrigation schedule.  Apply weed seed meal, spoiled corn meal, dried brewer’s grains or similar DRY organic “fertilizer” at 2 Tablespoons (1/8th cup) per square foot ~ 1 ounce per square foot ~ 5 pounds per 100 square feet ~ 1 ton (2,000 pounds) per acre.  Apply WET materials like spent brewer’s grains or fresh cow manure at 8 Tablespoons (1/2 cup) per square foot ~ 4 ounces per square foot ~ 25 pounds per 100 square feet ~ 5 tons per acre.  Broadcast worm food on soil surface.  Reapply as needed when food is eaten = no longer visible on soil surface.

–>     Ammonia based nitrogen fertilizers kill earthworms.  The worst form is anhydrous ammonia gas.  Liquid ammonia fertilizers are far less injurious.  Note:  Organic fertilizers can also be lethal.  Excessive amounts of manure lagoon effluent decimate worm populations.  It is good practice to irrigate before applying ammonia or any fertilizer, chemical or organic.  (Irrigation prevents plants from absorbing too much fertilizer at once.  Over-fed plants attract insect pests).

–>     RULE:  Chemical fertilizers (or manure lagoon effluents) are best applied in small amounts throughout the growing season, ideally diluted in irrigation water.  For best results do not apply fertilizers to bare soils; apply nutrients only to growing plants.  Earthworms are quite sensitive to concentrated chemicals, organic or synthetic.

–>     To stabilize ammonia in animal manures mix with 5% phosphate rock powder by weight (100 pounds of phosphate rock per ton = 2,000 pounds of manure).  Store under cover until needed.  Spread or incorporate manure on field then immediately seed with Buckwheat (Fagopyrum esculentum) or other phosphorous absorbing cover crop.  (Mixing phosphate rock with manure greatly increases phosphate availability to crops.  Organic acids in manure make phosphorous soluble).

–>     Concentrated chemical fertilizers (especially nitrogen) decrease soil organic matter and earthworm populations.  Spread supplementary organic matter on fields where chemical nutrients are applied.  Whenever practical use organic fertilizers to encourage earthworm growth.

–>     How Earthworm Populations Vary by Soil Type and Land Use

50,000 worms/acre ~ 1  worm/square foot:  Moldboard Plowed Continuous Corn; Acid Peat Soils.

80,000 worms/acre ~ 2 worms/square foot:  No-Till Continuous Corn with Herbicide.

150,000 worms/acre ~ 3 worms/square foot:  Fine Gravel Soils; Coarse Sandy Soils; Medium & Heavy Clay Soils.

170,000 worms/acre ~ 4 worms/square foot:  Bare Earth Orchards (Conventional Cultivation); Alluvial = Silt Soils; Light Clay Soils; Heavy Loam Soils.

225,000 worms/acre ~ 5 worms/square foot:  Medium Loam Soils; Fine Sandy Soils.

250,000 worms/acre ~ 6 worms/square foot:  Chisel Plowed Corn & Soybeans Rotation; Chisel Plowed Continuous Soybeans; Light Loam Soils.

500,000  worms/acre ~ 12 worms/square foot:  No-Till with Herbicides.

650,000 worms/acre ~ 15 worms/square foot:  Moldboard Plowed Continuous Soybeans.

1,000,000 worms/acre ~ 23 worms/square foot:  Biological No-Till (Rye Mulch-In-Place); Orchards with Mixed Grass & Legume Sod; Undisturbed Tall Grass Prairies & Hay Fields; Natural Alpine Meadows.

1,300,000 worms/acre ~ 30 worms/square foot:  Biological No-Till with Mixed Species Cover Crops; Fields Fallowed 5 Years (Mostly Broad Leaf Weeds).

2 million worms/acre ~ 46 worms/square foot:  Continuous Clover Living Mulch; Organic Gardens; Dairy Pastures; Manure Fertilized Fields (22 Tons per Acre Yearly).

3 million worms/acre ~ 69 worms/square foot:  Year-Round Mulch 8 Inches Thick (Vineyards & Berry Farms); Sheet Composting 12 Inches Thick (Orchards); High Humus Organic Gardens; Raised Beds Filled with Compost, Leaf Mold, or Manure.

4 million worms/acre ~ 92 worms/square foot:  Undisturbed Temperate Deciduous Forests with Deep Leaf Litter; Intensively Grazed Alpine Pastures.

5 million worms/acre ~ 115 worms/square foot:  Temperate Rain Forests in Oregon & Washington.

6 million worms/acre ~ 138 worms/square foot:  Intensive Rotational Grazing Dairy Pastures; Manure Fertilized Fields (44 Tons per Acre Yearly).

7 million worms/acre ~ 161 worms/square foot:  Greenhouse Beds 3 Feet Deep Filled with Composted Manure.

8 million worms/acre ~ 184 worms/square foot:  New Zealand Sheep Pastures (Intensive Rotational Grazing).

Note:     Numbers are approximate.  Expect considerable variation between countries, climatic zones, elevation above sea level, and land management practices.  Earthworms do not thrive in acidic soils, poorly drained soils, rocky or sandy soils, or tight heavy clays.  The most important environmental factor for earthworm survival is ORGANIC MATTER.  Earthworm numbers increase or decrease dramatically depending on the amount of available food.  Highest populations occur on soils where plants grow year-round, and on soils covered with substantial depths of leaf litter or other plant materials.  To estimate worm populations use a tape measure and straight-edged garden spade, dig a 1 cubic foot soil sample, then carefully break apart the soil and tally earthworm numbers.  Multiple samples per acre yield more accurate estimates.

–>     1 million earthworms per acre is the Holy Grail for most farmers.  This goal is unreachable with conventional farming practices.  To increase worm populations on a field-scale basis requires a long-term soil conservation strategy including crop rotations, cover crops, living mulches, and reduced tillage.  Additional measures such as improved drainage (vertical mulching or tile lines), increased aeration (subsoil ripping or keyline plowing), and erosion control (terraces, contour planting and strip cropping) may also be required.  Overriding all is the logistics of food supply = providing sufficient tonnage of organic matter to feed an army of earthworms and other soil critters.  This is rarely accomplished unless the soil is covered with growing plants 365 days each year.

–>     A watershed management plan is recommended as more water = more vegetation = higher earthworm populations.  The goal is to capture and store every drop of rain that falls upon your land.  Passive or active irrigation may be needed to maintain worm populations at desired levels.

–>     Reaching the goal of 2 or 3 million earthworms per acre is nearly impossible without some form of “mixed agriculture” = crops and farm animals.  Animals provide manure needed to feed large numbers of worms.

–>     Cow manure applied at 1 pound per square foot ~ 22 tons = 44,000 pounds per acre yearly is sufficient to maintain populations of 1 million earthworms per acre (on fields where plants are grown year-round = 365 days annually).

–>     Earthworm populations soar when pastures are managed by intensive rotational grazing or mob grazing.  High concentrations of livestock (300 to 1,500 Animal Units per acre per day) deposit vast quantities of manure.  Fresh manure is excellent worm food.  (1 Animal Unit = 1 AU = 1,000 pounds of live animal weight, regardless of species).

–>     The ancient Roman practice of cattle penning relies on earthworms to help restore “tired”, “weak”, or “sick” fields.  Erect temporary fencing around land to be healed.  Broadcast seed or spread wildflower hay over soil.  Fill enclosure with livestock until land is “well crowded” = animals have just enough room to turn around ~ 8 x 8 feet = 64 square feet per cow ~ 680 cows per acre.  Feed livestock in pen until land is “well dunged and trodden” = 1/2 to 1 pound of manure per square foot ~ 10 to 20 tons of manure per acre = move livestock to new pen every day or every other day.  Cattle stomp seed into earth.  Earthworms and dung beetles till soil.  Manure and urine fertilize ground.  Pastures or fields are “enlivened” = revived by intensive dose of organic matter which causes soil critter populations to soar.  Soil organisms jump start biological nutrient recycling system which supports land revegetation.  Earthworms provide natural soil restoration without tractors, diesel fuel, or synthetic chemicals.

–>     Greek philosophers first noted the link between earthworms and improved crop growth.  This observation led to the development of worm farming practiced by cottagers and other small landholders who did not have cows or draft animals to produce manure for fertilizer.  In spring spread cut weeds and other green plant materials over garden.  Apply mulch thickly = 8 inches deep.  This was the original green manure.  In fall, rake tree leaves and spread over garden 8 inches deep.  Keep garden covered with weeds and leaves year-round.

The night before planting, take a lantern and collect earthworms from hay fields or pastures.  Put worms in a pail with damp moss or leaf mold to keep the “wrigglers” from drying out.  Set several worms with each seed or transplant.  cover immediately with soil and just enough mulch to lightly shade the soil.  When plants are established tuck mulch close around their stems.  Water garden as needed.  Do not spade, fork, plow, till, hoe, or cultivate soil — just plant, mulch, and harvest.  Continuous mulch feeds and protects earthworms and topsoil.  You can run entire farms on nothing but fresh cut weeds and native earthworms.  Space rows widely so there are sufficient weeds to mulch crops liberally.

–>     Over a typical 5 to 6 month growing season, 1 million earthworms per acre will excrete 150 to 180 TONS of worm casts.  These are deposited throughout the soil profile from the surface to approximately 6 feet deep.

Note:  This is a vast amount of nutrients ~ 6.88 to 8.26 pounds of earthworm castings per square foot!  Where does all the fertilizer go?  There are far more available nutrients than any crop could possibly absorb.  This is a mystery.  Nutrient recycling must be extremely rapid with most of the fertilizer elements held within soil critters and organic matter.

–>     Fertilizer Analysis of Surface Earthworm Casts Collected Nightly for 31 Days in July 2011 from 16 Organic Farms in Austria:

2.56% Nitrogen : 1.31% Phosphorous : 1.56% Potassium: 3.69% Calcium = 51.2 pounds Nitrogen + 26.2 pounds Phosphorous + 31.2 pounds Potassium + 73.8 pounds Calcium per ton of earthworm casts.  Average organic matter content of earthworm casts sampled = 7.1% by dry weight.  50 casts bulked for each sample.  16 farms x 31 days = 496 samples total.

–>     Average Nutrient Concentration in Earthworm Casts:

5x Nitrogen (500% more N than found in parent soil)

7x Phosphorous (700% more P than found in parent soil)

10x Potassium (1,000% more K than found in parent soil)

1.5x Calcium (150% more Ca than found in parent soil)

3x Magnesium (300% more Mg than found in parent soil)

Earthworms are living fertilizer factories.  They ingest their weight in soil and organic matter daily then excrete manure containing concentrated plant nutrients.  These nutrients are highly available = easily absorbed and will not “burn” plant roots.  Earthworm casts are rich sources of essential plant micro-nutrients.  These trace elements are often “tied up” = unavailable in parent soils but highly soluble in earthworm casts.  Plants fertilized with earthworm casts rarely require additional nutrients.  This is why earthworm casts have been the standard natural greenhouse fertilizer since the 17th century.

Would You Like To Know More?     Contact the Author directly if you have any questions or need additional information about managing agricultural earthworm populations.

Please visit:     http://www.worldagriculturesolutions.com  — or —  send your questions to:  Eric Koperek, Editor, World Agriculture Solutions, 413 Cedar Drive, Moon Township, Pennsylvania, 15108 United States of America  — or —  send an e-mail to:  Eric Koperek = worldagriculturesolutions@gmail.com

About The Author:     Mr. Koperek is a plant breeder who farms in Pennsylvania during summer and Florida over winter.  (Growing 2 generations yearly speeds development of new crop varieties).